888 resultados para Knowledge representation (Information theory)
Resumo:
The concept of knowledge is the central one used when solving the various problems of data mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of modern logic: the inductive inference and the deductive inference. The first one is used for extracting the knowledge from the data. The second is applied when the knowledge is used for calculation of the goal attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite predicates represented by logical vectors and matrices.
Resumo:
There have been multifarious approaches in building expert knowledge in medical or engineering field through expert system, case-based reasoning, model-based reasoning and also a large-scale knowledge-based system. The intriguing factors with these approaches are mainly the choices of reasoning mechanism, ontology, knowledge representation, elicitation and modeling. In our study, we argue that the knowledge construction through hypermedia-based community channel is an effective approach in constructing expert’s knowledge. We define that the knowledge can be represented as in the simplest form such as stories to the most complex ones such as on-the-job type of experiences. The current approaches of encoding experiences require expert’s knowledge to be acquired and represented in rules, cases or causal model. We differentiate the two types of knowledge which are the content knowledge and socially-derivable knowledge. The latter is described as knowledge that is earned through social interaction. Intelligent Conversational Channel is the system that supports the building and sharing on this type of knowledge.
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. ^ In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.^
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.
Resumo:
The pharmaceutical industry wields disproportionate power and control within the medical economy of knowledge where the desire for profit considerably outweighs health for its own sake. Utilizing the theoretical tools of political philosophy, this project restructures the economy of medical knowledge in order to lessen the oligarchical control possessed by the pharmaceutical industry. Ultimately, this project argues that an economy of medical knowledge structured around communitarian political theory lessens the current power dynamic without taking an anti-capitalist stance. Arising from the core commitments of communitarian-liberalism, the production, distribution, and consumption of medical knowledge all become guided processes seeking to realize the common good of quality healthcare. This project also considers two other theoretical approaches: liberalism and egalitarianism. A Medical knowledge economy structured around liberal political theory is ultimately rejected as it empowers the oligarchical status quo. Egalitarian political theory is able to significantly reduce the power imbalance problem but simultaneously renders inconsequential medical knowledge; therefore, it is also rejected.
Resumo:
This paper proposes a preliminary classification of knowledge organization research, divided among epistemology, theory, and methodology plus three spheres of research: design, study, and critique. This work is situated in a metatheoretical framework, drawn from sociological thought. Example works are presented along with preliminary classification. The classification is then briefly described as a comparison tool which can be used to demonstrate overlap and divergence in cognate discourses of knowledge organization (such as ontology engineering).
Resumo:
Oggigiorno il concetto di informazione è diventato cruciale in fisica, pertanto, siccome la migliore teoria che abbiamo per compiere predizioni riguardo l'universo è la meccanica quantistica, assume una particolare importanza lo sviluppo di una versione quantistica della teoria dell'informazione. Questa centralità è confermata dal fatto che i buchi neri hanno entropia. Per questo motivo, in questo lavoro sono presentati elementi di teoria dell'informazione quantistica e della comunicazione quantistica e alcuni sono illustrati riferendosi a modelli quantistici altamente idealizzati della meccanica di buco nero. In particolare, nel primo capitolo sono forniti tutti gli strumenti quanto-meccanici per la teoria dell'informazione e della comunicazione quantistica. Successivamente, viene affrontata la teoria dell'informazione quantistica e viene trovato il limite di Bekenstein alla quantità di informazione chiudibile entro una qualunque regione spaziale. Tale questione viene trattata utilizzando un modello quantistico idealizzato della meccanica di buco nero supportato dalla termodinamica. Nell'ultimo capitolo, viene esaminato il problema di trovare un tasso raggiungibile per la comunicazione quantistica facendo nuovamente uso di un modello quantistico idealizzato di un buco nero, al fine di illustrare elementi della teoria. Infine, un breve sommario della fisica dei buchi neri è fornito in appendice.
Resumo:
In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Hydrodynamic studies were conducted in a semi-cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60 degrees and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/U-ms from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst`s Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.
Resumo:
The research analyzed critical aspects of the knowledge management process based on the analyses of knowledge, abilities and attitudes required to individual knowledge workers and to organizations responsible for the management process. In the present work a characterization of the knowledge management process was developed and information and knowledge wokers defined. Competence concept was discussed and specialists gave opinions about critical competences to knowledge management process. The opinions were organized and analyzed by the Delphi method. The results aggregate to the management context by discussing an extremely important resource to organizations - knowledge - and because they support its management process. The research identified wide critical aspects that are compatible with current organizational challenges, directing the process management to important themes as: the worker able to create, the organization able to convert individual knowledge into organizational knowledge, knowledge sharing while still tacit, the maximization organizational knowledge use, information and knowledge generation and preservation, among others important topics to be observed by knowledge workers and by administrators responsible for the knowledge management process.
Resumo:
In the design of lattice domes, design engineers need expertise in areas such as configuration processing, nonlinear analysis, and optimization. These are extensive numerical, iterative, and lime-consuming processes that are prone to error without an integrated design tool. This article presents the application of a knowledge-based system in solving lattice-dome design problems. An operational prototype knowledge-based system, LADOME, has been developed by employing the combined knowledge representation approach, which uses rules, procedural methods, and an object-oriented blackboard concept. The system's objective is to assist engineers in lattice-dome design by integrating all design tasks into a single computer-aided environment with implementation of the knowledge-based system approach. For system verification, results from design examples are presented.
Resumo:
The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.
Resumo:
One of the most important advantages of database systems is that the underlying mathematics is rich enough to specify very complex operations with a small number of statements in the database language. This research covers an aspect of biological informatics that is the marriage of information technology and biology, involving the study of real-world phenomena using virtual plants derived from L-systems simulation. L-systems were introduced by Aristid Lindenmayer as a mathematical model of multicellular organisms. Not much consideration has been given to the problem of persistent storage for these simulations. Current procedures for querying data generated by L-systems for scientific experiments, simulations and measurements are also inadequate. To address these problems the research in this paper presents a generic process for data-modeling tools (L-DBM) between L-systems and database systems. This paper shows how L-system productions can be generically and automatically represented in database schemas and how a database can be populated from the L-system strings. This paper further describes the idea of pre-computing recursive structures in the data into derived attributes using compiler generation. A method to allow a correspondence between biologists' terms and compiler-generated terms in a biologist computing environment is supplied. Once the L-DBM gets any specific L-systems productions and its declarations, it can generate the specific schema for both simple correspondence terminology and also complex recursive structure data attributes and relationships.