963 resultados para Kinase-c Activation
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Numerous studies investigating the possible role of altered Ca2+ homeostasis in hypertension have compared resting and agonist-stimulated intracellular free Ca2+ ([Ca2+](i)) in cultured aortic smooth muscle cells from spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. However, such studies have not given consistent results. Differences in the method used to load cells with the Ca2+-sensitive indicator fura-2 have been investigated here as a possible source of variability between studies. We also describe the adaptation of a fluorescence technique for the assessment of basal Ca2+ permeability in SHR and WKY through the measurement of Mn2+ influx. The results are consistent with the hypothesis that basal Ca2+ influx is elevated in cultured aortic smooth muscle cells from SHR compared to those from WKY. However, this was not reflected as a significant difference between the two strains in basal or angiotensin II (200 nmol/L)stimulated [Ca2+](i). Furthermore, this result was not dependent on the protocol used to load cells with fura-2. Hence, measurement of bulk [Ca2+](i) does not appear to be the most sensitive parameter for altered Ca2+ homeostasis in SHR. Other compartments of the cell may better reflect altered Ca2+ fluxes in hypertension and are discussed in this work.
Resumo:
The detection of preclinical heart disease is a new direction in diabetes care. This comment describes the study by Vinereanu and co-workers in this issue of Clinical Science in which tissue Doppler echocardiography has been employed to demonstrate subtle systolic and diastolic dysfunction in Type 11 diabetic patients who had normal global systolic function and were free of coronary artery disease. The aetiology of early ventricular dysfunction in diabetes relates to complex intramyocardial and extramyocardial mechanisms. The initiating event may be due to insulin resistance, and involves abnormal myocardial substrate utilization and uncoupling of mitochondrial oxidative phosphorylation. Dysglycaemia plays an important role via the effects of oxidative stress, protein kinase C activation and advanced glycosylation end-products on inflammatory signalling, collagen metabolism and fibrosis. Extramyocardial mechanisms involve peripheral endothelial dysfunction, arterial stiffening and autonomic neuropathy. The clinical significance of the ventricular abnormalities described is unknown. Confirmation of their prognostic importance for cardiac disease in diabetes would justify routine screening for presymptomatic ventricular dysfunction, as well as clinical trials of novel agents for correcting causal mechanisms. These considerations could also have implications for patients with obesity and the metabolic syndrome.
Resumo:
In this study, we report the effect of fatty acids on the Thy-1 antigen mRNA decay. Low serum and synthetic medium culture conditions were used to demonstrate that fatty acids, which are important metabolites involved as second messengers in signal transduction, also influence the steady-state mRNA level. Detailed analysis demonstrated that polyunsaturated lipids attached to bovine serum albumin, such as linoleic, linolenic, and arachidonic acids, modulate gene expression specifically in the S1A T lymphoma cell line by inducing a 3-5-fold increase in the steady-state Thy-1 mRNA level, concomitant with a twofold increase in cell surface expression. A similar modulation was observed in the immature CD4-CD8- T cell precursors but not in mature thymocytes. Nuclear run-on and transfection experiments indicated that the observed Thy-1 mRNA level is post-transcriptionally regulated and that the presence of the coding region is sufficient for this adaptive response. A mechanism without a requirement for protein kinase C activation, but involving Ca2+ entry, could account for this difference in Thy-1 mRNA stability.
Resumo:
Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) 1b-V-IX receptor complex, GPV1 and integrin alpha(2)beta(1)-These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alphaIIbbeta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPV1 and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis.
Resumo:
Toxic phorbol esters from Chinese tallow stimulate protein kinase C. Toxicon25, 1129 – 1233, 1987. — Phorbol esters were isolated from the seeds of Chinese tallow (Sapium sebiferum L. Roxb.). These compounds were based on the tigliane nuclei, 4-deoxyphorbol, 12-deoxyphorbol and 4,20-dideoxy-5-hydroxyphorbol. The pro-inflammatory activity (id50) of the pure compounds was between 0.042 and 2.6 nmoles per ear. Protein kinase C activation assays were carried out on samples of enzyme purified from mammalian brain and the activities (Ka) were in the range 76 – 176 nM. The 4,20-dideoxy-5-hydroxy analogue was inactive in both tests. Chinese tallow, which is used as a substitute for linseed oil, may represent an industrial toxic hazard in terms of both pro-inflammatory and tumour-promoting effects.
Resumo:
Cystic fibrosis (CF) lung disease is characterized by infection with Pseudomonas aeruginosa and a sustained accumulation of neutrophils. In this study, we analyzed 1) the expression of MyD88-dependent TLRs on circulating and airway neutrophils in P. aeruginosa-infected CF patients, P. aeruginosa-infected non-CF bronchiectasis patients, and noninfected healthy control subjects and 2) studied the regulation of TLR expression and functionality on neutrophils in vitro. TLR2, TLR4, TLR5, and TLR9 expression was increased on airway neutrophils compared with circulating neutrophils in CF and bronchiectasis patients. On airway neutrophils, TLR5 was the only TLR that was significantly higher expressed in CF patients compared with bronchiectasis patients and healthy controls. Studies using confocal microscopy and flow cytometry revealed that TLR5 was stored intracellularly in neutrophils and was mobilized to the cell surface in a protein synthesis-independent manner through protein kinase C activation or after stimulation with TLR ligands and cytokines characteristic of the CF airway microenvironment. The most potent stimulator of TLR5 expression was the bacterial lipoprotein Pam(3)CSK(4). Ab-blocking experiments revealed that the effect of Pam(3)CSK(4) was mediated through cooperation of TLR1 and TLR2 signaling. TLR5 activation enhanced the phagocytic capacity and the respiratory burst activity of neutrophils, which was mediated, at least partially, via a stimulation of IL-8 production and CXCR1 signaling. This study demonstrates a novel mechanism of TLR regulation in neutrophils and suggests a critical role for TLR5 in neutrophil-P. aeruginosa interactions in CF lung disease.
Resumo:
Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^
Resumo:
Concanavalin A, a T cell mitogen enhanced DNA synthesis in murine splenocytes. Amongst the early signals prior to this event was an increase in cytosolic calcium derived from both intra- and extracellular sources. The requirements for extracellular calcium persisted for four hours after the lectin administration which itself was needed for six hours. Putative calcium channel antagonists and calmodulin inhibitors blocked ihe increase in DNA synthesis. The calcium signal was mimicked by application of the ionophore, A23187, although no increase in DNA synthesis occurred. An activator of protein kinase C, 12-0- tetradecanoylphorbol 13-acetate, had little effect in isolation but the combined application of these two agents greatly enhanced DNA synthesis. The natural mediators of these events are presumed to be inositol trisphosphate and diacylglycerol derived from phosphatidylinositol bisphosphate hydrolysis. Lectin application and protein kinase C activation both increased intracellular pH possibly as a result of Na'l'/H"'' exchange since amiloride an inhibitor of this antiporter inhibited lectin induced DNA synthesis. The calcium and hydrogen ionic changes occur within minutes of lectin application; the protracted requirement for this mitogen suggests further signalling mechanisms occur to elicit maximum DNA synthesis in these cells. Gonadectomy caused an increase in thymic and splenic weight. Spleno-cytes derived from castrated mice showed no change in mitogen response whereas those from ovariectomised mice demonstrated a reduced lectin sensitivity. Testosterone, 5 a dihydrotestosterone, a and 0 oestradiol all inhibited lectin induced DNA synthesis but only at pharmacological concentrations. Testosterone glucuronide and cholesterol were without effect Studies with mouse serum fractions of differing steroidal status were unable to confirm the presence or absence of serum factors which might mediate the effects of steroid on lymphoid cells, all fractions tested inhibited lymphocyte transformation. Both interleukin-2 and lipopolysaccharide induced splenocyte mitogene-sis was also impaired by high steroid concentrations in vitro, suggesting that steroids mediate their effect by a non-specific, non-receptor-mediated event.
Resumo:
The FUS1 tumor suppressor gene (TSG) has been found to be deficient in many human non-small cell lung cancer (NSCLC) tissue samples and cell lines (1,2,3). Studies have shown potent anti-tumor activity of FUS1 in animal models where FUS1 was delivered through a liposomal vector (4) and the use of FUS1 as a therapeutic agent is currently being studied in clinical human trials (5). Currently, the mechanisms of FUS1 activity are being investigated and my studies have shown that c-Abl tyrosine kinase is inhibited by the FUS1 TSG.^ Considering that many NSCLC cell lines are FUS1 deficient, my studies further identified that FUS1 deficient NSCLC cells have an activated c-Abl tyrosine kinase. C-Abl is a known proto-oncogene and while c-Abl kinase is tightly regulated in normal cells, constitutively active Abl kinase is known to contribute to the oncogenic phenotype in some types of hematopoietic cancers. My studies show that the active c-Abl kinase contributes to the oncogenicity of NSCLC cells, particularly in tumors that are deficient in FUS1, and that c-Abl may prove to be a viable target in NSCLC therapy.^ Current studies have shown that growth factor receptors play a role in NSCLC. Over-expression of the epidermal growth factor receptor (EGFR) plays a significant role in aggressiveness of NSCLC. Current late stage treatments include EFGR tyrosine kinase inhibitors or EGFR antibodies. Platelet-derived growth factor receptor (PDGFR) also has been shown to play a role in NSCLC. Of note, both growth factor receptors are known upstream activators of c-Abl kinase. My studies indicate that growth factor receptor simulation along deficiency in FUS1 expression contributes to the activation of c-Abl kinase in NSCLC cells. ^
Resumo:
Cross-linking of the high-affinity IgE receptor (FcɛRI) on mast cells with IgE and multivalent antigen triggers mitogen-activated protein (MAP) kinase activation and cytokine gene expression. We report here that MAP kinase kinase 4 (MKK4) gene disruption does not affect either MAP kinase activation or cytokine gene expression in response to cross-linking of FcɛRI in embryonic stem cell-derived mast cells. MKK7 is activated in response to cross-linking of FcɛRI, and this activation is inhibited by MAP/ERK kinase (MEK) kinase 2 (MEKK2) gene disruption. In addition, expression of kinase-inactive MKK7 in the murine mast cell line MC/9 inhibits c-Jun NH2-terminal kinase (JNK) activation in response to cross-linking of FcɛRI, whereas expression of kinase-inactive MKK4 does not affect JNK activation by this stimulus. However, FcɛRI-induced activation of the tumor necrosis factor-α (TNF-α) gene promoter is not affected by expression of kinase-inactive MKK7. We describe an alternative pathway by which MEKK2 activates MEK5 and big MAP kinase1/extracellular signal-regulated kinase 5 in addition to MKK7 and JNK, and interruption of this pathway inhibits TNF-α promoter activation. These findings suggest that JNK activation by antigen cross-linking is dependent on the MEKK2-MKK7 pathway, and cytokine production in mast cells is regulated in part by the signaling complex MEKK2-MEK5-ERK5.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
Mobile Lipids detected using H-1-NMR in stimulated lymphocytes were correlated with cell cycle phase, expression of the interleukin-2 receptor alpha and proliferation to assess the activation status of the lymphocytes. Mobile lipid levels, IL-2R alpha expression and proliferation increased after treatment with PMA and ionomycin. PMA or ionomycin stimulation alone induced increased IL-2R alpha expressiom but not proliferation, PMA- but not ionomycin-stimulation generated mobile lipid, Treatment with anti-CD3 antibody did not increase IL-2R alpha expression or proliferation but did generate increased amounts of mobile lipid, The cell cycle status of thymocytes treated with anti-CD3, PMA or ionomycin alone indicated an. accumulation of the cells in the G(1) phase of the cell cycle, The generation of mobile lipid was abrogated in anti-CD3 antibody-stimulated thymic lymphocytes but not in splenic lymphocytes, using a phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor which blocked cells in the G(1)/S phase of the cell cycle, This suggests that the H-1-NMR-detectable mobile Lipid may be generated in anti-CD3 antibody-stimulated thymic lymphocytes by the action of PC-PLC activity via the catabolism of PC, in the absence of classical signs of activation. (C) 1997 Academic Press.
Resumo:
Hemorrhage and resuscitation (H/R) leads to phosphorylation of mitogen-activated stress kinases, an event that is associated with organ damage. Recently, a specific, cell-penetrating, protease-resistant inhibitory peptide of the mitogen-activated protein kinase c-JUN N-terminal kinase (JNK) was developed (D-JNKI-1). Here, using this peptide, we tested if inhibition of JNK protects against organ damage after H/R. Male Sprague-Dawley rats were treated with D-JNKI-1 (11 mg/kg, i.p.) or vehicle. Thirty minutes later, rats were hemorrhaged for 1 h to a MAP of 30 to 35 mmHg and then resuscitated with 60% of the shed blood and twice the shed blood volume as Ringer lactate. Tissues were harvested 2 h later. ANOVA with Tukey post hoc analysis or Kruskal-Wallis ANOVA on ranks, P < 0.05, was considered significant. c-JUN N-terminal kinase inhibition decreased serum alanine aminotransferase activity as a marker of liver injury by 70%, serum creatine kinase activity by 67%, and serum lactate dehydrogenase activity by 60% as compared with vehicle treatment. The histological tissue damage observed was blunted after D-JNKI-1 pretreatment both for necrotic and apoptotic cell death. Hepatic leukocyte infiltration and serum IL-6 levels were largely diminished after D-JNKI-1 pretreatment. The extent of oxidative stress as evaluated by immunohistochemical detection of 4-hydroxynonenal was largely abrogated after JNK inhibition. After JNK inhibition, activation of cJUN after H/R was also reduced. Hemorrhage and resuscitation induces a systemic inflammatory response and leads to end-organ damage. These changes are mediated, at least in part, by JNK. Therefore, JNK inhibition deserves further evaluation as a potential treatment option in patients after resuscitated blood loss.