914 resultados para KINASE-C
Resumo:
c-Abl is a ubiquitously expressed protein tyrosine kinase activated by DNA damage and implicated in two responses: cell cycle arrest and apoptosis. The downstream pathways by which c-Abl induces these responses remain unclear. We examined the effect of overexpression of c-Abl on the activation of mitogen-activated protein kinase pathways and found that overexpression of c-Abl selectively stimulated p38, while having no effect on c-Jun N-terminal kinase or on extracellular signal-regulated kinase. c-Abl-induced p38 activation was primarily mediated by mitogen-activated protein kinase kinase (MKK)6. A C-terminal truncation mutant of c-Abl showed no activity for stimulating p38 and MKK6, while a kinase-deficient c-Abl mutant still retained a residual activity. We tested different forms of c-Abl for their ability to induce apoptosis and found that apoptosis induction correlated with the activation of the MKK6-p38 kinase pathway. Importantly, dominant-negative MKK6, but not dominant-negative MKK3 or p38, blocked c-Abl-induced apoptosis. Because overexpression of p38 blocks cell cycle G1/S transition, we also tested whether the MKK6-p38 pathway is required for c-Abl-induced cell cycle arrest, and we found that neither MKK6 nor p38 dominant-negative mutants could relieve c-Abl-induced cell cycle arrest. Finally, DNA damage-induced MKK6 and p38 activation was diminished in c-Abl null fibroblasts. Our study suggests that c-Abl is required for DNA damage-induced MKK6 and p38 activation, and that activation of MKK6 by c-Abl is required for c-Abl-induced apoptosis but not c-Abl-induced cell cycle arrest.
Resumo:
The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.
Resumo:
Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.
Resumo:
Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database 1 and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p < 0.05, fold change >1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05). These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide
Resumo:
The effect of arachidonic acid (AA) on the activity of diacylglycerol (DG) kinase in neural membranes was investigated. When rat brain cortical membranes were incubated with 0.5 mM dipalmitin and [gamma-P-32]ATP, formation of phosphatidic acid (PA) was observed. It was linear up to 5 min, and the initial rate was similar to 1.0 nmol/min/mg of protein. The DG kinase activity was stimulated twofold by 0.25 mM AA. The stimulation was apparent at the earliest time point measured (1 min) and with the lowest concentration of AA tested (62.5 mu M). The stimulation was proportional to the concentration of AA up to 250 mu M. AA was the most potent stimulator of DG kinase, and linolenic acid showed similar to 40% stimulation. Oleic acid showed no effect, whereas linoleic and the saturated fatty acids tested were inhibitory. AA stimulation of DG kinase was observed only with membranes of cerebrum, cerebellum, and myelin and not with brain cytosol or liver membranes. AA also stimulated the formation of PA in the absence of added dipalmitin (endogenous activity) with membranes prepared from whole brain. DG kinase of neural membranes was extracted with 2 M NaCl, which on dialysis yielded a precipitate. Both the precipitate and the supernatant showed DG kinase activity, but only the enzyme in the precipitate was stimulated by AA at concentrations as low as 25 mu M. It is suggested that AA, through its effect on DG kinase, regulates the level of DG in neural membranes, which in turn regulates protein kinase C activity.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) belongs to the eIF2 alpha kinase family and plays a critical role in interferon (IFN)-mediated antiviral response. Recently, in Japanese flounder (Paralichthys olivaceus), a PKR gene has been identified. In this study, we showed that PoPKR localized to the cytoplasm, and the dsRNA-binding motifs (dsRBMs) played a determinative role in protein localization. In cultured FEC cells, PoPKR was detected at a low level of constitutive expression but was highly induced after treatment with UV-inactivated grass carp hemorrhagic virus, active SMRV and Poly I:C although with different expression kinetics. In flounder, PoPKR was ubiquitously distributed in all tested tissues, and SMRV infection resulted in significant upregulation at mRNA and protein levels. In order to reveal the role of PoPKR in host antiviral response, its expression upon exposure to various inducers was characterized and further compared with that of PoHRI, which is another eIF2 alpha kinase of flounder. Interestingly, expression comparison revealed that all inducers stimulated upregulation of PoHRI in cultured flounder embryonic cells and fish, with a similar kinetics to PoPKR but to a less extent. These results suggest that, during antiviral immune response, both flounder eIF2 alpha kinases might play similar roles and that PoPKR is the predominant kinase. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
We have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.
Resumo:
Light-dependent deactivation of rhodopsin as well as homologous desensitization of beta-adrenergic receptors involves receptor phosphorylation that is mediated by the highly specific protein kinases rhodopsin kinase (RK) and beta-adrenergic receptor kinase (beta ARK), respectively. We report here the cloning of a complementary DNA for RK. The deduced amino acid sequence shows a high degree of homology to beta ARK. In a phylogenetic tree constructed by comparing the catalytic domains of several protein kinases, RK and beta ARK are located on a branch close to, but separate from the cyclic nucleotide-dependent protein kinase and protein kinase C subfamilies. From the common structural features we conclude that both RK and beta ARK are members of a newly delineated gene family of guanine nucleotide-binding protein (G protein)-coupled receptor kinases that may function in diverse pathways to regulate the function of such receptors.
Resumo:
Homologous (agonist-specific) desensitization of beta-adrenergic receptors (beta ARs) is accompanied by and appears to require phosphorylation of the receptors. We have recently described a novel protein kinase, beta AR kinase, which phosphorylates beta ARs in vitro in an agonist-dependent manner. This kinase is inhibited by two classes of compounds, polyanions and synthetic peptides derived from the beta 2-adrenergic receptor (beta 2AR). In this report we describe the effects of these inhibitors on the process of homologous desensitization induced by the beta-adrenergic agonist isoproterenol. Permeabilization of human epidermoid carcinoma A431 cells with digitonin was used to permit access of the charged inhibitors to the cytosol; this procedure did not interfere with the pattern of isoproterenol-induced homologous desensitization of beta 2AR-stimulated adenylyl cyclase. Inhibitors of beta AR kinase markedly inhibited homologous desensitization of beta 2ARs in the permeabilized cells. Inhibition of desensitization by heparin, the most potent of the polyanion inhibitors of beta AR kinase, occurred over the same concentration range (5-50 nM) as inhibition of purified beta AR kinase assessed in a reconstituted system. Inhibition of desensitization by heparin was accompanied by a marked reduction of receptor phosphorylation in the permeabilized cells. Whereas inhibitors of beta AR kinase inhibited homologous desensitization, inhibitors of protein kinase C and of cyclic-nucleotide-dependent protein kinases were ineffective. These data establish that phosphorylation of beta ARs by beta AR kinase is an essential step in homologous desensitization of the receptors. They further suggest a potential therapeutic value of inhibitors of beta AR kinase in inhibiting agonist-induced desensitization.
Resumo:
Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-beta receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKC alpha and PKC beta II levels were increased in 25 mmol/L glucose. However, only PKC beta II inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-beta receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKC beta II were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKC beta II inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKC beta II was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKC beta II-dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.
Resumo:
Protein kinases C are a family of serine threonine protein kinases that play key roles in extracellular signal transduction. Inappropriate activation of protein kinase C has been implicated in the pathophysiology of many diseases, including diabetes mellitus. Indeed, protein kinase C activation may contribute not only to the pathogenesis of diabetic complications such as nephropathy and retinopathy, but also to insulin resistance. Growing awareness that protein kinase C isoforms subserve specific subcellular functions has led to the development of isoform-specific inhibitors, which may be useful investigational tools and therapeutic agents for attenuating the effects of inappropriate protein kinase C activity. Here we review the role played by protein kinases C in diabetic nephropathy and the recent progress that has been made to modulate its activity using specific inhibitors. Curr Opin Nephrol Hypertens 7:563-570. (C) 1998 Lippincott Wiiliams & Wilkins.
Resumo:
Diabetic retinopathy is one of the most common complications of diabetes and is a major cause of new blindness in the working-age population of developed countries. While the exact pathogenic basis of this condition remains ill defined, it is clear that hyperglycaemia is a critical factor in its aetiology. Protein kinase C (PKC) activation is one of the sequelae of hyperglycaemia and it is thought to play an important role in the development of diabetic complications. This review questions the currently held dogma that PKC stimulation in diabetes is solely mediated through the overproduction of palmitate and oleate enriched diacylglycerols. Blood glucose concentrations are closely tracked by changes in the levels of free fatty acids and these, in addition to oxidative stress, may account for the aberrant activation of PKCs in diabetes. Little is known about why PKCs fail to downregulate in diabetes and efforts should be directed towards acquiring such information. Considerable evidence implicates the PKCbeta isoform in the pathogenesis of diabetic retinopathy, but other isoforms may also be of relevance. In addition to PKCs, it is evident that novel diacyglycerol-activated non-kinase receptors could also play a role in the development of diabetic complications. Therapeutic agents have been developed to inhibit specific PKC isoforms and PKCbeta antagonists are currently undergoing clinical trials to test their toxicity and efficacy in suppressing diabetic complications. The likely impact of these drugs in the treatment of diabetic patients is considered.
Resumo:
Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.
Resumo:
Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells.
Resumo:
Les maladies cardiovasculaires sont la principale cause de mortalité dans les pays occidentaux et représentent une complication majeure du syndrome métabolique. Il est maintenant largement admis que l’athérosclérose est une maladie inflammatoire chronique et que l’inflammation joue un rôle pathogénique majeur dans l’initiation et la progression de la maladie athéromateuse. Il a été démontré qu’une augmentation des niveaux sériques de la protéine c-réactive (CRP), une protéine de la phase aigüe et un important constituant de la réponse immunitaire de type inné, est associée à un risque cardiovasculaire accru. Ainsi, il a été documenté qu’une augmentation de CRP, tant chez les sujets sains que chez les sujets diabétiques, était associée à une augmentation du risque de morbidité et de mortalité cardiovasculaires. De multiples évidences suggèrent que la CRP puisse non seulement constituer un marqueur de risque des maladies cardiovasculaires mais aussi représenter un facteur pro-athérogénique direct. La dysfonction endothéliale représente un des stades les plus précoces du processus athérosclérotique et un rôle de la CRP dans la pathogenèse de la dysfonction endothéliale est postulé. Outre son origine systémique, la CRP est produite dans la lésion athérosclérotique et par diverses cellules vasculaires, dont les cellules endothéliales. Afin d’élucider le rôle de la CRP vasculaire dans l’altération de la fonction endothéliale associée au syndrome métabolique, nous avons étudié la régulation de l’expression endothéliale de la CRP par les acides gras libres (AGL) et le rôle de la CRP endothéliale dans l’inhibition de la synthèse d’oxyde nitrique (NO) par les AGL. Nos résultats démontrent que :1) l’acide palmitique (PA) induit l’expression génique de CRP au niveau de cellules endothéliales aortiques humaines (HAECs) en culture et, augmente, de manière dose-dépendante, l’expression protéique de la CRP; 2) La pré-incubation des HAECs avec des antioxydants et des inhibiteurs de la i) protéine kinase C (PKC), ii) du facteur nucléaire-kappa B, iii) des Janus kinases et des protéines de transduction et de régulation de la transcription et iv) des protéines kinases activées par les mitogènes prévient l’effet stimulant du PA sur l’expression protéique et génique de la CRP; 3) Le traitement des HAECs par le PA induit une augmentation de la production des espèces réactives oxygénées, un effet prévenu par les inhibiteurs de la PKC et par l’AICAR(5-amino-4-imidazole carboxamide 1-β-D-ribofuranoside), un activateur de la protéine kinase activée par l’AMP; 4) L’incubation des HAECs en présence de PA résulte enfin en une diminution de la production basale endothéliale de NO, un effet abrogé par la préincubation de ces cellules avec un anticorps anti-CRP. Dans l’ensemble, ces données démontrent un effet stimulant du PA sur l’expression de la CRP endothéliale via l’activation de kinases et de facteurs de transcription sensibles au stress oxydatif. Ils suggèrent en outre un rôle de la CRP dans la dysfonction endothéliale induite par les AGL.