991 resultados para Jones, A. D. (Abner Dumont), 1807-1872,
Resumo:
The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The performance of muon reconstruction in CMS is evaluated using a large data sample of cosmic-ray muons recorded in 2008. Efficiencies of various high-level trigger, identification, and reconstruction algorithms have been measured for a broad range of muon momenta, and were found to be in good agreement with expectations from Monte Carlo simulation. The relative momentum resolution for muons crossing the barrel part of the detector is better than 1% at 10 GeV/c and is about 8% at 500 GeV/c, the latter being only a factor of two worse than expected with ideal alignment conditions. Muon charge misassignment ranges from less than 0.01% at 10GeV/c to about 1% at 500 GeV/c. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The prevalence of Body Dysmorphic Disorder (BDD) among collegiate athletes has not been clearly determined. The purpose of this study was to determine if there are symptoms of body dysmorphic disorder found in Division I women’s soccer players. The researcher hypothesized that there would be some symptoms found within the participants of sport and that there was a need to research this area further. The study consisted of four participants who participated in semi-structured interviews. The subjects were asked a series of questions from the Yale-Brown Obsessive Compulsive Scale Modified for Body Dysmorphic Disorder (BDD-YBOCS) to determine if they indicated any symptoms of BDD. The prevalence of symptoms of BDD found among these four participants was very low. There was only one athlete who scored high on the questions that could be questionable of whether the indicators or symptoms of BDD were present. In conclusion there was not enough evidence to support the research hypothesis. The sample used was not a clear representation of all Division I women’s soccer players. Further research is needed to determine if BDD symptoms are found among Division I women’s soccer players.
Resumo:
The objective of this roundtable discussion is to examine the preparation of minority faculty as it relates to succeeding in an academic career. Although substantial research has been conducted on faculty preparation (Gaff, 1997; Garcia, 2000, Tice, Gaff, and Pruitt-Logan, 1998), conversations fall short when it comes to ongoing success development of faculty. This discussion will focus primarily on initiatives/plans to encourage the expansion and success of minority faculty at PWI's. For the purposes of this discussion, minority faculty is defined in terms of race/ethnic and gender.
Indices for daily temperature and precipitation extremes in Europe analysed for the period 1901-2000
Resumo:
This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.
Resumo:
Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ± 1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr − 1, ELUC 0.9 ± 0.5 GtC yr − 1, GATM 4.3 ± 0.1 GtC yr − 1, S OCEAN 2.5 ± 0.5 GtC yr − 1, and S LAND 2.8 ± 0.8 GtC yr − 1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr − 1, 2.2 % above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr − 1, SOCEANwas 2.9 ± 0.5 GtC yr −1, and assuming an ELU Cof 1.0 ± 0.5 GtC yr − 1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr − 1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 con- centration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1 % (1.1–3.1 %) to 9.9 ± 0.5 GtC in 2013, 61 % above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70 % from EFF (390 ± 20 GtC) and 30 % from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center.
Resumo:
The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions.