947 resultados para J2 - Time Allocation,


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a detailed analysis of a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts in an area fire situation. Lanchester linear law attrition model is used to develop the dynamical equations governing the variation in force strength. Here we address a static resource allocation problem namely, Time-Zero-Allocation (TZA) where the resource allocation is done only at the initial time. Numerical examples are given to support the analytical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The incidence of obesity amongst patients presenting for elective Total Hip Arthroplasty (THA) has increased in the last decade and the relationship between obesity and the need for joint replacement has been demonstrated. This study evaluates the effects of morbid obesity on outcomes following primary THA by comparing short-term outcomes in THA between a morbidly obese (BMI ≥40) and a normal weight (BMI 18.5 - <25) cohort at our institution between January 2003 and December 2010. Methods Thirty-nine patients included in the morbidly obese group were compared with 186 in the normal weight group. Operative time, length of stay, complications, readmission and length of readmission were compared. Results Operative time was increased in the morbidly obese group at 122 minutes compared with 100 minutes (p=0.002). Post-operatively there was an increased 30-day readmission rate related to surgery of 12.8% associated with BMI ≥40 compared with 2.7% (p= 0.005) as well as a 5.1 fold increase in surgery related readmitted bed days - 0.32 bed days per patient for normal weight compared with 1.64 per patient for the morbidly obese (p=0.026). Conclusion Morbidly obese patients present a technical challenge and likely this and the resultant complications are underestimated. More work needs to be performed in order to enable suitable allocation of resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In achieving higher instruction level parallelism, software pipelining increases the register pressure in the loop. The usefulness of the generated schedule may be restricted to cases where the register pressure is less than the available number of registers. Spill instructions need to be introduced otherwise. But scheduling these spill instructions in the compact schedule is a difficult task. Several heuristics have been proposed to schedule spill code. These heuristics may generate more spill code than necessary, and scheduling them may necessitate increasing the initiation interval. We model the problem of register allocation with spill code generation and scheduling in software pipelined loops as a 0-1 integer linear program. The formulation minimizes the increase in initiation interval (II) by optimally placing spill code and simultaneously minimizes the amount of spill code produced. To the best of our knowledge, this is the first integrated formulation for register allocation, optimal spill code generation and scheduling for software pipelined loops. The proposed formulation performs better than the existing heuristics by preventing an increase in II in 11.11% of the loops and generating 18.48% less spill code on average among the loops extracted from Perfect Club and SPEC benchmarks with a moderate increase in compilation time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the problem of optimal bandwidth allocation in communication networks. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider a class of closed-loop feedback policies for the system and use a twotimescale simultaneous perturbation stochastic approximation(SPSA) algorithm to find an optimal policy within the prescribed class. We study the performance of the proposed algorithm on a numerical setting. Our algorithm is found to exhibit good performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of finding optimal parameterized feedback policies for dynamic bandwidth allocation in communication networks is studied. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider two different classes of multilevel closed-loop feedback policies for the system and use a two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm to find optimal policies within each prescribed class. We study the performance of the proposed algorithm on a numerical setting and show performance comparisons of the two optimal multilevel closedloop policies with optimal open loop policies. We observe that closed loop policies of Class B that tune parameters for both the queues and do not have the constraint that the entire bandwidth be used at each instant exhibit the best results overall as they offer greater flexibility in parameter tuning. Index Terms — Resource allocation, dynamic bandwidth allocation in communication networks, two-timescale SPSA algorithm, optimal parameterized policies. I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a network in which several service providers offer wireless access to their respective subscribed customers through potentially multihop routes. If providers cooperate by jointly deploying and pooling their resources, such as spectrum and infrastructure (e.g., base stations) and agree to serve each others' customers, their aggregate payoffs, and individual shares, may substantially increase through opportunistic utilization of resources. The potential of such cooperation can, however, be realized only if each provider intelligently determines with whom it would cooperate, when it would cooperate, and how it would deploy and share its resources during such cooperation. Also, developing a rational basis for sharing the aggregate payoffs is imperative for the stability of the coalitions. We model such cooperation using the theory of transferable payoff coalitional games. We show that the optimum cooperation strategy, which involves the acquisition, deployment, and allocation of the channels and base stations (to customers), can be computed as the solution of a concave or an integer optimization. We next show that the grand coalition is stable in many different settings, i.e., if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each a share that removes any incentive to split from the coalition. The optimal cooperation strategy and the stabilizing payoff shares can be obtained in polynomial time by respectively solving the primals and the duals of the above optimizations, using distributed computations and limited exchange of confidential information among the providers. Numerical evaluations reveal that cooperation substantially enhances individual providers' payoffs under the optimal cooperation strategy and several different payoff sharing rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular networks played key role in enabling high level of bandwidth for users by employing traditional methods such as guaranteed QoS based on application category at radio access stratum level for various classes of QoSs. Also, the newer multimode phones (e.g., phones that support LTE (Long Term Evolution standard), UMTS, GSM, WIFI all at once) are capable to use multiple access methods simulta- neously and can perform seamless handover among various supported technologies to remain connected. With various types of applications (including interactive ones) running on these devices, which in turn have different QoS requirements, this work discusses as how QoS (measured in terms of user level response time, delay, jitter and transmission rate) can be achieved for interactive applications using dynamic bandwidth allocation schemes over cellular networks. In this work, we propose a dynamic bandwidth allocation scheme for interactive multimedia applications with/without background load in the cellular networks. The system has been simulated for many application types running in parallel and it has been observed that if interactive applications are to be provided with decent response time, a periodic overhauling of policy at admission control has to be done by taking into account history, criticality of applications. The results demonstrate that interactive appli- cations can be provided with good service if policy database at admission control is reviewed dynamically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers antenna selection (AS) at a receiver equipped with multiple antenna elements but only a single radio frequency chain for packet reception. As information about the channel state is acquired using training symbols (pilots), the receiver makes its AS decisions based on noisy channel estimates. Additional information that can be exploited for AS includes the time-correlation of the wireless channel and the results of the link-layer error checks upon receiving the data packets. In this scenario, the task of the receiver is to sequentially select (a) the pilot symbol allocation, i.e., how to distribute the available pilot symbols among the antenna elements, for channel estimation on each of the receive antennas; and (b) the antenna to be used for data packet reception. The goal is to maximize the expected throughput, based on the past history of allocation and selection decisions, and the corresponding noisy channel estimates and error check results. Since the channel state is only partially observed through the noisy pilots and the error checks, the joint problem of pilot allocation and AS is modeled as a partially observed Markov decision process (POMDP). The solution to the POMDP yields the policy that maximizes the long-term expected throughput. Using the Finite State Markov Chain (FSMC) model for the wireless channel, the performance of the POMDP solution is compared with that of other existing schemes, and it is illustrated through numerical evaluation that the POMDP solution significantly outperforms them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider optimal average power allocation policies in a wireless channel in the presence of individual delay constraints on the transmitted packets. Power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. We have developed a computationally efficient online algorithm, when there is same hard delay constraint for all packets. Later on, we generalize it to the case when there are multiple real time streams with different hard deadline constraints. Our algorithm uses linear programming and has very low complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider near-optimal policies for a single user transmitting on a wireless channel which minimize average queue length under average power constraint. The power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. Later, we also extend these results to the multiuser case. We show that our policies can be used in a system with energy harvesting sources at the transmitter. Next we consider data users which require minimum rate guarantees. Finally we consider the system which has both data and real time users. Our policies have low computational complexity, closed form expression for mean delays and require only the mean arrival rate with no queue length information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In metropolitan cities, public transportation service plays a vital role in mobility of people, and it has to introduce new routes more frequently due to the fast development of the city in terms of population growth and city size. Whenever there is introduction of new route or increase in frequency of buses, the nonrevenue kilometers covered by the buses increases as depot and route starting/ending points are at different places. This non-revenue kilometers or dead kilometers depends on the distance between depot and route starting point/ending point. The dead kilometers not only results in revenue loss but also results in an increase in the operating cost because of the extra kilometers covered by buses. Reduction of dead kilometers is necessary for the economic growth of the public transportation system. Therefore, in this study, the attention is focused on minimizing dead kilometers by optimizing allocation of buses to depots depending upon the shortest distance between depot and route starting/ending points. We consider also depot capacity and time period of operation during allocation of buses to ensure parking safety and proper maintenance of buses. Mathematical model is developed considering the aforementioned parameters, which is a mixed integer program, and applied to Bangalore Metropolitan Transport Corporation (BMTC) routes operating presently in order to obtain optimal bus allocation to depots. Database for dead kilometers of depots in BMTC for all the schedules are generated using the Form-4 (trip sheet) of each schedule to analyze depot-wise and division-wise dead kilometers. This study also suggests alternative locations where depots can be located to reduce dead kilometers. Copyright (C) 2015 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A short-term real-time operation model with fuzzy state variables is developed for irrigation of multiple crops based on earlier work on long-term steady-state policy. The features of the model that distinguish it from the earlier work are (1) apart from inclusion of fuzziness in reservoir storage and in soil moisture of crops, spatial variations in rainfall and soil moisture of crops are included in the real-time operation model by considering gridded command area with a grid size of 0.5 degrees latitude by 0.5 degrees longitude; (2) the water allocation model and soil moisture balance equations are integrated with the real-time operation model with consideration of ponding water depth for Paddy crop; the model solution specifies reservoir releases for irrigation in a 10-day time period and allocations among the crops on a daily basis at each grid by maintaining soil moisture balance at the end of the day; and (3) the release policy is developed using forecasted daily rainfall data of each grid and is implemented for the current time period using actual 10-day inflow and actual daily rainfall of each grid. The real-time operation model is applied to Bhadra Reservoir in Karnataka, India. The results obtained using the real-time operation model are compared with those of the standard operating policy model. Inclusion of fuzziness in reservoir storage and soil moisture of crops captures hydrologic uncertainties in real time. Considerations of irrigation decisions on a daily basis and the gridded command area result in variations in allocating water to the crops, variations in actual crop evapotranspiration, and variations in soil moisture of the crops on a daily basis for each grid of the command area. (C) 2015 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four southern Minnesota populations of curlyleaf pondweed ( Potamogeton crispus L.) were sampled monthly from January 2001 to November 2002 to determine seasonal phenological, biomass, and carbohydrate allocation patterns. Low periods of carbohydrate storage in the seasonal phenological cycle indicate potentially vulnerable periods in the plant’s life cycle and may be the ideal time to initiate management and control efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I consider cooperation situations where players have network relations. Networks evolve according to a stationary transition probability matrix and at each moment in time players receive payoffs from a stationary allocation rule. Players discount the future by a common factor. The pair formed by an allocation rule and a transition probability matrix is called expected fair if for every link in the network both participants gain, marginally, and in discounted, expected terms, the same from it; and it is called a pairwise network formation procedure if the probability that a link is created (or eliminated) is positive if the discounted, expected gains to its two participants are positive too. The main result is the existence, for the discount factor small enough, of an expected fair and pairwise network formation procedure where the allocation rule is component balanced, meaning it distributes the total value of any maximal connected subnetwork among its participants. This existence result holds for all discount factors when the pairwise network formation procedure is restricted. I finally provide some comparison with previous models of farsighted network formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.

In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.