990 resultados para Iterative Closet Point


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timely and comprehensive scene segmentation is often a critical step for many high level mobile robotic tasks. This paper examines a projected area based neighbourhood lookup approach with the motivation towards faster unsupervised segmentation of dense 3D point clouds. The proposed algorithm exploits the projection geometry of a depth camera to find nearest neighbours which is time independent of the input data size. Points near depth discontinuations are also detected to reinforce object boundaries in the clustering process. The search method presented is evaluated using both indoor and outdoor dense depth images and demonstrates significant improvements in speed and precision compared to the commonly used Fast library for approximate nearest neighbour (FLANN) [Muja and Lowe, 2009].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Point-to-point speed cameras are a relatively new and innovative technological approach to speed enforcement that is increasingly been used in a number of highly motorised countries. Previous research has provided evidence of the positive impact of this approach on vehicle speeds and crash rates, as well as additional traffic related outcomes such as vehicle emissions and traffic flow. This paper reports on the conclusions and recommendations of a large-scale project involving extensive consultation with international and domestic (Australian) stakeholders to explore the technological, operational, and legislative characteristics associated with the technology. More specifically, this paper provides a number of recommendations for better practice regarding the implementation of point-to-point speed enforcement in the Australian and New Zealand context. The broader implications of the research, as well as directions for future research, are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iterative Intersectioning is a body of art works that comes out of the collaboration between author and electronic artist Jen Seevinck and a community of print artists, most particularly Elizabeth Saunders (EJ) and Robert Oakman. The work shown here is concerned with the creative process of collaboration, specifically as this informs visual forms. This is through our focus on process. This process has facilitated a 'conversational' exchange between all artists and a corresponding evolution in the artworks. In each case the dialogue is either between the author, Jen and EJ or between Jen and Robert. It consists of passing work between parties, interpreting it and working into it, before passing it back. The result is a series of art works including those shown here. The concept evolves in parallel to this. Importantly, at each of her iterations of creative work, the author Jen determines a similar 'treatment' or 'interpretation' across both print artists works at that time. A synthesis of EJ and Robert's creative interpretation -- at a high level -- occurs. In this sense the concept and works can be understood to intersect with one another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state of the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area wide traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation. This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the biascorrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports on the utilisation of the Manchester Driver Behaviour Questionnaire (DBQ) to examine the self-reported driving behaviours of a large sample of Australian fleet drivers (N = 3414). Surveys were completed by employees before they commenced a one day safety workshop intervention. Factor analysis techniques identified a three factor solution similar to previous research, which was comprised of: (a) errors, (b) highway-code violations and (c) aggressive driving violations. Two items traditionally related with highway-code violations were found to be associated with aggressive driving behaviours among the current sample. Multivariate analyses revealed that exposure to the road, errors and self-reported offences predicted crashes at work in the last 12 months, while gender, highway violations and crashes predicted offences incurred while at work. Importantly, those who received more fines at work were at an increased risk of crashing the work vehicle. However, overall, the DBQ demonstrated limited efficacy at predicting these two outcomes. This paper outlines the major findings of the study in regards to identifying and predicting aberrant driving behaviours and also highlights implications regarding the future utilisation of the DBQ within fleet settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate whether framing effects of voluntary contributions are significant in a provision point mechanism. Our results show that framing significantly affects individuals of the same type: cooperative individuals appear to be more cooperative in the public bads game than in the public goods game, whereas individualistic subjects appear to be less cooperative in the public bads game than in the public goods game. At the aggregate level of pooling all individuals, the data suggests that framing effects are negligible, which is in contrast with the established result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital interactive artwork concerned with drawing, mark-making and emergence as a mechanism to facilitate creative experiences. The artwork comes from a concept developed during a collaboration with community artists EJ Saunders and Robert Oakman at Cerebral Palsy League.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel scheme for improving speaker diarization by making use of repeating speakers across multiple recordings within a large corpus. We call this technique speaker re-diarization and demonstrate that it is possible to reuse the initial speaker-linked diarization outputs to boost diarization accuracy within individual recordings. We first propose and evaluate two novel re-diarization techniques. We demonstrate their complementary characteristics and fuse the two techniques to successfully conduct speaker re-diarization across the SAIVT-BNEWS corpus of Australian broadcast data. This corpus contains recurring speakers in various independent recordings that need to be linked across the dataset. We show that our speaker re-diarization approach can provide a relative improvement of 23% in diarization error rate (DER), over the original diarization results, as well as improve the estimated number of speakers and the cluster purity and coverage metrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is about localising across extreme lighting and weather conditions. We depart from the traditional point-feature-based approach as matching under dramatic appearance changes is a brittle and hard thing. Point feature detectors are fixed and rigid procedures which pass over an image examining small, low-level structure such as corners or blobs. They apply the same criteria applied all images of all places. This paper takes a contrary view and asks what is possible if instead we learn a bespoke detector for every place. Our localisation task then turns into curating a large bank of spatially indexed detectors and we show that this yields vastly superior performance in terms of robustness in exchange for a reduced but tolerable metric precision. We present an unsupervised system that produces broad-region detectors for distinctive visual elements, called scene signatures, which can be associated across almost all appearance changes. We show, using 21km of data collected over a period of 3 months, that our system is capable of producing metric localisation estimates from night-to-day or summer-to-winter conditions.