932 resultados para Iteration graphics
Resumo:
Background. Age-related motor slowing may reflect either motor programming deficits, poorer movement execution, or mere strategic preferences for online guidance of movement. We controlled such preferences, limiting the extent to which movements could be programmed. Methods. Twenty-four young and 24 older adults performed a line drawing task that allowed movements to he prepared in advance in one case (i.e., cue initially available indicating target location) and not in another (i.e., no cue initially available as to target location). Participants connected large or small targets illuminated by light-emitting diodes upon a graphics tablet that sampled pen tip position at 200 Hz. Results. Older adults had a disproportionate difficulty initiating movement when prevented from programming in advance. Older adults produced slower, less efficient movements, particularly when prevented from programming under greater precision requirements. Conclusions. The slower movements of older adults do not simply reflect a preference for online control, as older adults have less efficient movements when forced to reprogram their movements. Age-related motor slowing kinematically resembles that seen in patients with cerebellar dysfunction.
Resumo:
EXAFS spectra of [(HC(Ph2PO)(3))(2)Cu](ClO4)(2). 2H(2)O have been measured at room temperature. These show that the CuO6 unit is tetragonally elongated, rather than having the compressed tetragonal geometry previously inferred from the X-ray crystal structure determination. [GRAPHICS]
Resumo:
[1] We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.
Resumo:
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Resumo:
Although planning is important for the functioning of patients with dementia of the Alzheimer Type (DAT), little is known about response programming in DAT. This study used a cueing paradigm coupled with quantitative kinematic analysis to document the preparation and execution of movements made by a group of 12 DAT patients and their age and sex matched controls. Participants connected a series of targets placed upon a WACOM SD420 graphics tablet, in response to the pattern of illumination of a set of light emitting diodes (LEDs). In one condition, participants could programme the upcoming movement, whilst in another they were forced to reprogramme this movement on-line (i.e. they were not provided with advance information about the location of the upcoming target). DAT patients were found to have programming deficits, taking longer to initiate movements; particularly in the absence of cues. While problems spontaneously programming a movement might cause a greater reliance upon on-line guidance, when both groups were required to guide the movement on-line, DAT patients continued to show slower and less efficient movements implying declining sensori-motor function; these differences were not simply due to strategy or medication status. (C) 1997 Elsevier Science Ltd.
Resumo:
This study aimed to quantify the efficiency and smoothness of voluntary movement in Huntington's disease (HD) by the use of a graphics tablet that permits analysis of movement profiles. In particular, we aimed to ascertain whether a concurrent task (digit span) would affect the kinematics of goal-directed movements. Twelve patients with HD and their matched controls performed 12 vertical zig-zag movements, with both left and right hands (with and without the concurrent task), to large or small circular targets over long or short extents. The concurrent task was associated with shorter movement times and reduced right-hand superiority. Patients with HD were overall slower, especially with long strokes, and had similar peak velocities for both small and large targets, so that controls could better accommodate differences in target size. Patients with HD spent more time decelerating, especially with small targets, whereas controls allocated more nearly equal proportions of time to the acceleration and deceleration phases of movement, especially with large targets. Short strokes were generally less force inefficient than were long strokes, especially so for either hand in either group in the absence of the concurrent task, and for the right hand in its presence. With the concurrent task, however, the left hand's behavior changed differentially for the two groups; for patients with HD, it became more force efficient with short strokes and even less efficient with long strokes, whereas for controls, it became more efficient with long strokes. Controls may be able to divert attention away from the inferior left hand, increasing its automaticity, whereas patients with HD, because of disease, may be forced to engage even further online visual control under the demands of a concurrent task. Patients with HD may perhaps become increasingly reliant on terminal visual guidance, which indicates an impairment in constructing and refining an internal representation of the movement necessary for its. effective execution. Basal ganglia dysfunction may impair the ability to use internally generated cues to guide movement.
Resumo:
Objectives-This study adopted a concurrent task design and aimed to quantify the efficiency and smoothness of voluntary movement in Tourette's syndrome via the use of a graphics tablet which permits analysis of movement profiles. In particular, the aim was to ascertain whether a concurrent task (digit span) would affect the kinematics of goal directed movements, and whether patients with Tourette's syndrome would exhibit abnormal functional asymmetries compared with their matched controls. Methods-Twelve patients with Tourette's syndrome and their matched controls performed 12 vertical zig zag movements, with both left and right hands (with and without the concurrent task), to large or small targets over long or short extents. Results-With short strokes, controls showed the predicted right hand superiority in movement time more strongly than patients with Tourette's syndrome, who instead showed greater hand symmetry with short strokes. The right hand of controls was less force efficient with long strokes and more force efficient with short strokes, whereas either hand of patients with Tourette's syndrome was equally force efficient, irrespective of stroke length, with an overall performance profile similar to but better than that of the controls' left hand. The concurrent task, however, increased the force efficiency of the right hand in patients with Tourette's syndrome and the left hand in controls. Conclusions-Patients with Tourette's syndrome, compared with controls, were not impaired in the performance of fast, goal directed movements such as aiming at targets; they performed in certain respects better than controls. The findings clearly add to the growing literature on anomalous lateralisation in Tourette's syndrome, which may be explained by the recently reported loss of normal basal ganglia asymmetries in that disorder.
Resumo:
[GRAPHICS] The stereocontrolled synthesis of (2S,4R,6R,8S,10S,1'R,1"R)-2(acetylhydroxymethyl)-4, 10-dimethyl-8(isopropenylhydroxymethyl)-1, 7-dioxaspiro[5,5]-undecane (4a) and its C1"-epimer (4b), the key mother spiroketals of the HIV-1 protease inhibitive didemnaketals from the ascidian Didemnum sp., has been carried out through multisteps from the natural (R)-(+)-pulegone, which involved the diastereoselective construction of four chiral carbon centers(C-2, C-6, C-8, and C-1') by intramolecular chiral induce.
Resumo:
[GRAPHICS] In a number of Bactrocera species the penultimate step in the biosynthesis of spiroacetals is shown to be the hydroxylation of an alkyltetrahydropyranol followed by cyclization, The monooxygenases that catalyze this side chain hydroxylation show a strong preference for oxidation four carbons from the hemiketal center, to produce the spiroacetal, The hydroxy spiroacetals observed in Bactrocera appear to derive from direct oxidation of the parent spiroacetals and not from alternate precursors.
Resumo:
Sympatric individuals of Rattus fuscipes and Rattus leucopus, two Australian native rats from the tropical wet forests of north Queensland, are difficult to distinguish morphologically and are often confused in the field. When we started a study on fine-scale movements of these species, using microsatellite markers, we found that the species as identified in the field did not form coherent genetic groups. In this study, we examined the potential of an iterative process of genetic assignment to separate specimens from distinct (e.g. species, populations) natural groups. Five loci with extensive overlap in allele distributions between species were used for the iterative process. Samples were randomly distributed into two starting groups of equal size and then subjected to the test. At each iteration, misassigned samples switched groups, and the output groups from a given round of assignment formed the input groups for the next round. All samples were assigned correctly on the 10th iteration, in which two genetic groups were clearly separated. Mitochondrial DNA sequences were obtained from samples from each genetic group identified by assignment, together with those of museum voucher specimens, to assess which species corresponded to which genetic group. The iterative procedure was also used to resolve groups within species, adequately separating the genetically identified R. leucopus from our two sampling sites. These results show that the iterative assignment process can correctly differentiate samples into their appropriate natural groups when diagnostic genetic markers are not available, which allowed us to resolve accurately the two R. leucopus and R. fuscipes species. Our approach provides an analytical tool that may be applicable to a broad variety of situations where genetic groups need to be resolved.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.
Resumo:
It is common for a real-time system to contain a nonterminating process monitoring an input and controlling an output. Hence, a real-time program development method needs to support nonterminating repetitions. In this paper we develop a general proof rule for reasoning about possibly nonterminating repetitions. The rule makes use of a Floyd-Hoare-style loop invariant that is maintained by each iteration of the repetition, a Jones-style relation between the pre- and post-states on each iteration, and a deadline specifying an upper bound on the starting time of each iteration. The general rule is proved correct with respect to a predicative semantics. In the case of a terminating repetition the rule reduces to the standard rule extended to handle real time. Other special cases include repetitions whose bodies are guaranteed to terminate, nonterminating repetitions with the constant true as a guard, and repetitions whose termination is guaranteed by the inclusion of a fixed deadline. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
[GRAPHICS] A new general method for the construction of medium ring ethers has been developed. This involves the ring expansion of halo-O,S-acetals followed by a Ramburg-Backlund ring contraction reaction with concomitant extrusion of the sulfur atom. This methodology has been utilized for the synthesis of cis- and trans-lauthisan.