962 resultados para Ischnura elegans
Resumo:
Tetraspan vesicle membrane proteins (TVPs) sind konservierte, ubiquitär vorkommende Membranproteine synaptischer Vesikel und zytoplasmatischer Transportvesikel. Bei Säugetieren lassen sie sich in die Physine, Gyrine und SCAMPs (secretory carrier-associated membrane proteins) unterteilen, die im Nematoden C. elegans jeweils nur durch ein einzelnes Polypeptid vertreten sind (Synaptophysin-1 [SPH-1], Synaptogyrin-1 [SNG-1] und SCAMP-1 [SCM-1]). Obwohl den TVPs eine Beteiligung bei der Regulation des Vesikelzyklus zugesprochen wurde, sind Synaptophysin-1-Knockout-Mäuse und vollständig TVP-defiziente Würmer gesund und weisen nur geringgradige Veränderungen auf. In dieser Arbeit sollten daher zum einen genomweite komparative Transkriptomanalysen durchgeführt werden, um mögliche Kompensationsmechanismen in der Maus und C. elegans zu finden, zum anderen sollten mit Hilfe pharmakologischer Stressassays und genetischer Verfahren Schwachstellen und Redundanzen identifiziert werden. Erstaunlicherweise konnten durch Affymetrix GeneChip-Analysen der RNA in der Retina von Synaptophysin-1-/--Mäusen keine differenziell exprimierten Gene gefunden werden. Bei der Untersuchung der C. elegans-TVP-Dreifachmutante wurden hingegen 17 Gene mit erhöhter und 3 mit erniedrigter Transkription identifiziert. Die Befunde für 12 hochregulierte Gene wurden durch quantitative Real-Time RT-PCR bestätigt. Das am stärksten hochregulierte Gen arf-1.1 kodiert für eine GTPase, die vermutlich an der Regulation der Vesikelbildung beteiligt ist. Von den ebenso identifizierten Genen cdr-2, cdr-4 und pgp-9 ist bekannt, dass sie in Stresssituationen, z. B. in Gegenwart von Cadmium, verstärkt transkribiert werden. ugt-62 und ugt-19 kodieren für Glucuronosyltransferasen. Für arf-1.1, cdr-2, ugt-62 sowie für das Gen T16G1.6, das für eine coiled-coil-Domäne kodiert, wurden im Folgenden fluoreszierende Promoterkonstrukte hergestellt, um Koexpressionsmuster mit TVPs zu bestimmen. Es stellte sich heraus, dass alle vier Promoterkonstrukte im Darm zusammen mit SPH-1 und SCM-1 im Darm transkribiert werden. Mit fluoreszierenden Translationschimären konnte weiterhin gezeigt werden, dass ARF-1.1 und CDR-2 mit den Darm-spezifischen TVPs im apikalen Bereich der Darmzellen kolokalisieren. Um mehr über die Funktion von TVPs im Vesikelzyklus zu erfahren, wurden pharmakologische und genetische Analysen von Würmern durchgeführt, in denen die Expression des Neuronen-spezifischen SNG-1 verändert ist. Deletion oder Überexpression führte zu einer Resistenz gegenüber dem Acetylcholinesterase-Inhibitor Aldicarb und zu erhöhter Empfindlichkeit gegenüber dem GABA-Rezeptor-Antagonisten Pentylentetrazol. Auf genetischer Ebene zeigte sich, dass sng-1 synthetisch mit den Genen für Synaptotagmin-1, Endophilin A sowie Synaptojanin wirkt. Die beobachteten Effekte weisen auf alternative Funktionen in der synaptischen Übertragung hin und unterstützen zugleich die Hypothese, dass SNG-1 im synaptischen Vesikelzyklus eine wichtige Funktion erfüllt, die möglicherweise einem noch unbekannten redundanten Kompartiment-spezifischen Signalweg der synaptischen Transmission zuzuordnen ist.
Resumo:
Intermediärfilamente (IFs) sind neben Mikrotubuli und Aktinfilamenten die dritte filamentäre Komponente des Zytoskeletts. Sie wirken als mechanische Stabilisatoren, sind außerdem an Zelldifferenzierung, Proliferation und Apoptose beteiligt und tragen zu Zellpolarität bei. IFs sind dynamische Strukturen, die zelltypspezifisch in unterschiedlichen Anordnungen und Abundanzen vorkommen und von Signalkaskaden beeinflusst werden. Die zugrundeliegenden molekularen Mechanismen dieser fein abgestimmten Prozesse sind weitgehend unbekannt. In dieser Arbeit sollte deswegen ein Tiermodell entwickelt werden, um Regulatoren der IF-(Netzwerk)-Organisation in vivo zu untersuchen und zu identifizieren. Dazu wurde C. elegans ausgewählt, da es sich hierbei um einen genetisch gut charakterisierten und leicht manipulierbaren Organismus handelt, in dessen Genom elf Gene für zytoplasmatische IFs kodieren. Zunächst wurden stabil transgene C. elegans-Linien generiert, die fluoreszierende IFs exprimieren. Es konnte gezeigt werden, dass das darmspezifische IFB-2::CFP im Bereich des apikalen Junktionskomplex verankert ist und nahezu vollständig im subapikalen Terminalgeflecht der Enterozyten lokalisiert, das als Teil der endotube besonders stabil und widerstandsfähig ist. Wenn diese Tiere mit dsRNA gegen das ebenfalls im Terminalgeflecht exprimierte IF ifc-2 behandelt wurden, entwickelten sich blasenförmige Ausstülpungen des Darmlumens, die auf eine Schwächung der rigiden und formgebenden endotube hinwiesen und damit einen direkten in vivo-Beweis für die stressprotektive Funktion des intestinalen IF-Netzwerks lieferten. Die leichte Detektierbarkeit des IFB-2::CFP-Musters wurde in einem optischen Screen ausgenutzt, bei dem nach chemischer Mutagenese nach Veränderungen im IF-Muster gefahndet wurde. Hierbei wurden drei Mutanten isoliert. In Komplementationsanalysen stellte sich heraus, dass es sich in zwei Fällen um Allele desselben Gens handelt. Die Identifizierung der betroffenen Gene gelang durch eine PCR-basierte Kartierung von single nucleotide polymorphisms nach Verpaarung mit dem Hawaii-Stamm (snp-mapping) und anschließender RNAi-Analyse der Einzelgene in den identifizierten Chromosomenabschnitten. Im einen Fall handelte es sich um das sma-5-Gen, einer Serin/Threonin-Kinase mit Homologie zu den MAP-Kinasen MAPK7/ERK5 der Säuger. Hier wurden, ebenso wie beim ifc-2 (RNAi)-Phänotyp, progressive blasenförmige Ausstülpungen des Darmlumens beobachtet. Die beiden anderen Allele tragen Mutationen in einem bisher nicht näher charakterisierten Gen. In diesen Würmern kommt es zu einem vollständigen Auflösung des IFB-2::CFP-Netzwerks mit prominenten Akkumulationen um die apikalen Junktionen. Das Darmlumen ist stellenweise geweitet und das elektronendichte Terminalgeflecht fehlt fast vollständig, die Integrität des Darmepithels ist jedoch nicht kompromittiert. Die anderen IFs des Terminalgeflechts sind ebenfalls fehlverteilt, und die intestinale Expression von Aktin ist stark reduziert. Expressionskonstrukte des Gens zeigten weiterhin, dass es darmspezifisch synthetisiert wird und mit den IFs im Terminalgeflecht kolokalisiert. Das Protein ist, ähnlich wie das IF-assoziierte Filaggrin der Säuger ausgesprochen histidinreich. Es enthält außerdem eine Prolin-reiche Domäne, die Teil einer potentiellen Aktin-Bindedomäne ist. Auf Grund all dieser Eigenschaften wird die Bezeichnung IFO-1 (intermediate filament organizer) für das neue Protein vorgeschlagen, das möglicherweise als struktureller Zytoskelett-Linker wirkt. Die vorgestellten Ergebnisse untermauern die Bedeutung von C. elegans für die Identifizierung von Faktoren, die IF-Netzwerke regulieren, und die Möglichkeit, Defekte im lebenden Gesamtorganismus zu bestimmen.
Resumo:
The free radical theory of aging postulates that aging is caused by damage induced by oxidative stress. Such stress is present when the production of reactive oxygen species (ROS) exceeds the cellular antioxidant capacity. Hydrogen peroxide (H2O2) is one of the most abundant ROS. It is produced as a by-product by several enzymes and acts as second messenger controlling the activity of numerous cellular pathways. To maintain H2O2 levels that are sufficiently high to allow signaling to occur, but low enough to prevent damage of cellular macromolecules, the production and removal of H2O2 must be tightly regulated.rnWhen we investigated the effects of peroxide stress in the nematode C. elegans, we found that exogenous as well as endogenous peroxide stress causes age-related symptoms. We identified 40 target proteins of hydrogen peroxide that contain cysteines that get oxidized upon peroxide stress. Oxidation of redox-sensitive cysteines has been shown to regulate numerous cellular functions and likely contributes to the peroxide-mediated decrease in motility, fertility, growth rate and ATP levels. By monitoring the oxidation status of proteins over the lifespan of C. elegans, we discovered that many of the identified peroxide-sensitive proteins are heavily oxidized at distinct stages in life. As the free radical theory of aging predicts, we found oxidation to be significantly elevated in senescent worms. However, we were also able to identify numerous proteins that were significantly oxidized during the development of C. elegans. To investigate whether a correlation exists between developmental oxidative stress and lifespan, we monitored protein oxidation in long- and short-lived strains. We found that protein oxidation in short-lived C. elegans larvae was significantly increased. Additionally short-lived worms were incapable of recovering from the oxidative stress experienced during development which resulted in the inability to establish reducing conditions for the following reproductive phase. Long-lived C. elegans, on the other hand, did only experience a mild increase in protein oxidation in the developmental phase and were able to recover faster from oxidative stress than wild type worms. rnBecause many proteins that are sensitive to oxidation by H2O2 became oxidized in aging C. elegans, we monitored endogenous hydrogen peroxide concentrations over C. elegans lifespan and discovered that peroxide levels are significantly elevated in development. This suggests that the observed developmental protein oxidation is peroxide-mediated. The early onset of oxidative stress might be a result of increased metabolic activity in C. elegans development but could also represent the requirement of ROS dependent signaling events. Our results indicate that longevity is dependent on the worm’s ability to cope with this early boost of oxidants.rn
Resumo:
Die Proteinhomöostase wird in der Zelle von drei Stoffwechselwegen reguliert: den molekularen Chaperonen, dem Ubiquitin-Proteasom-System und dem autophagosomalen Abbauweg. Die (Makro)Autophagie verpackt und transportiert zytosolische Komponenten in Autophagosomen zu den Lysosomen, wo sie abgebaut werden. Eine Störung dieses Abbauwegs wirkt auf die Proteostase.rnIn dieser Dissertation wurde C. elegans als Modellorganismus zur Erforschung von Proteinstabilität genutzt. In einer RNAi-vermittelten Proteostase-Analyse von Chromosom I und ausgewählter zusätzlicher Gene wurde ein Wurmstamm, der ein Luc::GFP-Konstrukt im Muskel exprimiert, genutzt. Dieses Reporterprotein aggregiert unter Hitzestressbedingungen und diese Aggregation kann durch Modulatoren der Proteostase beeinflusst werden. Dabei wurden mögliche neue Faktoren der Proteinhomöostase entdeckt. Durch weitere Experimente bei denen die Aggregation von PolyQ35::YFP im AM140-System, der Paralyse-Phänotyp und die Akkumulation Thioflavin S-gefärbter Aggregate von Aβ42 im CL2006-Wurmstamm und die Effekte auf die Autophagie mittels eines GFP::LGG1-Konstrukt analysiert wurden, konnten rbg-1 und rbg-2 als neue Modulatoren der Proteinhomöostase, insbesondere der Autophagie, identifiziert werden.rnIm Säuger bilden beide Orthologe dieser Gene, RAB3GAP1 und RAB3GAP2 den heterodimeren RAB3GAP-Komplex, der bisher nur bekannt war für die Stimulation der Umwandlung der GTP-gebundenen aktiven Form zur GDP-gebundenen inaktiven Form der RAB GTPase RAB3. In Immunoblot-Analysen und mikroskopischen Darstellungen im Säugersystem konnte gezeigt werden, dass die Effekte auf die Proteostase über den autophagosomalen Abbauweg wirken. RAB3GAP1/2 wirken als positive Stimulatoren, wenn die Lipidierung von LC3-I und der autophagische Flux von LC3-II und p62/SQSTM1 betrachtet werden. Diese Effekte werden aber nicht über die RAB GTPase RAB3 vermittelt. Die Proteine FEZ1 und FEZ2 haben einen antagonistischen Effekt auf die Autophagie und wenn alle vier Komponenten RAB3GAP1, RAB3GAP2, FEZ1 und FEZ2 zusammen herunter- oder hochreguliert werden, heben sich diese Effekte auf. In Co-Immunopräzipitationen und proteomischen Analysen konnte keine direkte Interaktion zwischen dem RAB3GAP-Komplex und FEZ1/2 oder zu anderen Autophagie-Genen nachgewiesen werden.rnHier konnte der RAB3GAP-Komplex funktionell mit Proteostase und Autophagie in C. elegans und Säugerzellen assoziiert werden. Dieser Komplex zeigt Einflüsse auf die autophagosomale Biogenese indem sie die Proteostase und die Bildung von (prä)autophagosomalen Strukturen in C. elegans und die Lipidierung von LC3 und damit den autophagischen Flux der Autophagiesubstrate LC3-II und p62/SQSTM1 in Säugerzellen beeinflusst. Darüber hinaus wirkt RAB3GAP der komplexen Autophagie-Unterdrückung durch FEZ1 und FEZ2 entgegen. Somit konnte gezeigt werden, dass RAB3GAP als neuartiger Faktor auf die autophagosomale Biogenese und somit auf die Proteostase wirkt.rn
Resumo:
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Resumo:
Turtles experience numerous modifications in the morphological, physiological, and mechanical characteristics of their shells through ontogeny. Although a general picture is available of the nature of these modifications, few quantitative studies have been conducted on changes in turtle shell shape through ontogeny, and none on changes in strength or rigidity. This study investigates the morphological and mechanical changes that juvenile Trachemys scripta elegans undergo as they increase in size. Morphology and shell rigidity were quantified in a sample of 36 alcohol-preserved juvenile Trachemys scripta elegans. Morphometric information was used to create finite element models of all specimens. These models were used to assess the mechanical behavior of the shells under various loading conditions. Overall, we find that turtles experience complementary changes in size, shape, deformability, and relative strength as they grow. As turtles age their shells become larger, more elongate, relatively flatter, and more rigid. These changes are associated with decreases in relative (size independent) strength, even though the shells of larger turtles are stronger in an absolute sense. Decreased deformability is primarily due to changes in the size of the animals. Residual variation in deformability cannot be explained by changes in shell shape. This variation is more likely due to changes in the degree of connectedness of the skeletal elements in the turtle's shells, along with changes in the thickness and degree of mineralization of shell bone. We suggest that the mechanical implications of shell size, shape, and deformability may have a large impact on survivorship and development in members of this species as they mature. J. Morphol. 275:391-397, 2014. 2013 Wiley Periodicals, Inc. Copyright 2013 Wiley Periodicals, Inc.
Resumo:
During development, the genome undergoes drastic reorganization within the nuclear space. To determine tridimensional genome folding, genome-wide techniques (damID/Hi-C) can be applied using cell populations, but these have to be calibrated using microscopy and single-cell analysis of gene positioning. Moreover, the dynamic behavior of chromatin has to be assessed on living samples. Combining fast stereotypic development with easy genetics and microscopy, the nematode C. elegans has become a model of choice in recent years to study changes in nuclear organization during cell fate acquisition. Here we present two complementary techniques to evaluate nuclear positioning of genes either by fluorescence in situ hybridization in fixed samples or in living worm embryos using the GFP-lacI/lacO chromatin-tagging system.
Resumo:
With its invariant cell lineage, easy genetics and small genome, the nematode Caenorhabditis elegans has emerged as one of the prime models in developmental biology over the last 50 years. Surprisingly however, until a decade ago very little was known about nuclear organization in worms, even though it is an ideal model system to explore the link between nuclear organization and cell fate determination. Here, we review the latest findings that exploit the repertoire of genetic tools developed in worms, leading to the identification of important sequences and signals governing the changes in chromatin tridimensional architecture. We also highlight parallels and differences to other model systems.
Resumo:
Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.
Resumo:
Corynebacterium diphtheriae is the causative agent of cutaneous and pharyngeal diphtheria in humans. While lethality is certainly caused by diphtheria toxin, corynebacterial colonization may primarily require proteinaceous fibers called pili, which mediate adherence to specific tissues. The type strain of C. diphtheriae possesses three distinct pilus structures, namely the SpaA, SpaD, and SpaH-type pili, which are encoded by three distinct pilus gene clusters. The pilus is assembled onto the bacterial peptidoglycan by a specific transpeptidase enzyme called sortase. Although the SpaA pili are shown to be specific for pharyngeal cells in vitro, little is known about functions of the three pili in bacterial pathogenesis. This is mainly due to lack of in vivo models of corynebacterial infection. As an alternative to mouse models as mice do not have functional receptors for diphtheria toxin, in this study I use Caenorhabditis elegans as a model host for C. diphtheriae. A simple C. elegans model would be beneficial in determining the specific role of each pilus-type and the literature suggests that C. elegans infection model can be used to study a variety of bacterial species giving insight into bacterial virulence and host-pathogen interactions. My study examines the hypothesis that pili and toxin are major virulent determinants of C. diphtheriae in the C. elegans model host.
Resumo:
The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.
Resumo:
The nematode Caenorhabditis elegans is characterized by many features that make it highly attractive to study nuclear pore complexes (NPCs) and nucleocytoplasmic transport. NPC composition and structure are highly conserved in nematodes and being amenable to a variety of genetic manipulations, key aspects of nuclear envelope dynamics can be observed in great details during breakdown, reassembly, and interphase. In this chapter, we provide an overview of some of the most relevant modern techniques that allow researchers unfamiliar with C. elegans to embark on studies of nucleoporins in an intact organism through its development from zygote to aging adult. We focus on methods relevant to generate loss-of-function phenotypes and their analysis by advanced microscopy. Extensive references to available reagents, such as mutants, transgenic strains, and antibodies are equally useful to scientists with or without prior C. elegans or nucleoporin experience.