969 resultados para Irrigation management


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin River Irrigation Area (BRIA). A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For over 1,000 years, the Balinese have developed a unique system of democratic and sustainable water irrigation. It has shaped the cultural landscapes of Bali and enables local communities to manage the ecology of terraced rice fields at the scale of whole watersheds. The Subak system has made the Balinese the most productive rice growers in Indonesia and ensures a high level of food sovereignty for a dense population on the volcanic island. The Subak system provides a vibrant example of a diverse, ecologically sustainable, economically productive and democratic water management system that is also characterized by its nonreliance on fossil fuel derivatives or heavy machinery. In 2012, UNESCO has recognized five rice terraces and their water temples as World Heritage site and supports its conservation and protection. However, the fragile Subak system is threatened for its complexity and interconnectedness by new agricultural practices and increasing tourism on the island.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop’s requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of chemical fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers’ decision making as to the application of chemical fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A non-linear model is presented which optimizes the lay-out, as well as the design and management of trickle irrigation systems, to achieve maximum net benefit. The model consists of an objective function that maximizes profit at the farm level, subject to appropriate geometric and hydraulic constraints. It can be applied to rectangular shaped fields, with uniform or zero slope. The software used is the Gams-Minos package. The basic inputs are the crop-water-production function, the cost function and cost of system components, and design variables. The main outputs are the annual net benefit and pipe diameters and lengths. To illustrate the capability of the model, a sensitivity analysis of the annual net benefit for a citrus field is evaluated with respect to irrigated area, ground slope, micro-sprinkler discharge and shape of the field. The sensitivity analysis suggests that the greatest benefit is obtained with the smallest microsprinkler discharge, the greatest area, a square field and zero ground slope. The costs of the investment and energy are the components of the objective function that had the greatest effect in the 120 situations evaluated. (C) 1996 Academic Press Limited

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is presented two study cases about the approach in root analysis at field and laboratory conditions based on digital image analysis. Grapevine (Vitis vinifera L.) and date palm (Phoenix dactylifera L.) root systems were analyzed by both the monolith and trench wall method aided by digital image analysis. Correlation between root parameters and their fractional distribution over the soil profile were obtained, as well as the root diameter estimation. Results have shown the feasibility of digital image analysis for evaluation of root distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4+ and NO3−) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3−-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Throughout history, humans have cyclically return to their old traditions such as the organic orchards. Nowadays, these have been integrated into the modern cities and could supply fresh vegetables to the daily food improving human health. Organic orchards grow crops without pesticides and artificial fertilizers thus, they are respectful with the environment and guarantee the food's safety . In modern society, the application of new technology is a must, in this case to obtain an efficient irrigation. In order to monitor a proper irrigation and save water and energy, soil water content probes are used to measure soil water content. Among them, capacitive probes ,monitored with a specific data logger, are typically used. Most of them, specially the data loggers, are expensive and in many cases are not used. In this work, we have applied the open hardware Arduino to build and program a low cost datalogger for the programming of irrigation in an experimental organic orchard. Results showed that the application of such as low cost technology, which is easily available in the market and easy to understand, everyone can built and program its own device helping in managing water resources in organic orchards .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A better understanding of grapevine responses to drought and high air temperatures can help to optimize vineyard management to improve water use efficiency, yield and berry quality. Faster and robust field phenotyping tools are needed in modern precision viticulture, in particular in dry and hot regions such as the Mediterranean. Canopy temperature (Tc) is commonly used to monitor water stress in plants/crops and to characterize stomatal physiology in different woody species including Vitis vinifera. Thermography permits remote determination of leaf surface or canopy temperature in the field and also to assess the range and spatial distribution of temperature from different parts of the canopies. Our hypothesis is that grapevine genotypes may show different Tc patterns along the day due to different stomatal behaviour and heat dissipation strategies. We have monitored the diurnal and seasonal course of Tc in two grapevine genotypes, Aragonez (syn. Tempranillo) and Touriga Nacional subjected to deficit irrigation under typical Mediterranean climate conditions. Temperature measurements were complemented by determination of the diurnal course of leaf water potential (ψleaf) and leaf gas exchange. Measurements were done in two seasons (2013 and 2014) at different phenological stages: i) mid-June (green berry stage), ii) mid-July (veraison), iii) early August (early ripening) and iv) before harvest (late ripening). Correlations between Tc and minimal stomatal conductance will be presented for the two genotypes along the day. Results are discussed over the use of thermal imagery to derive information on genotype physiology in response to changing environmental conditions and to mild water stress induced by deficit irrigation. Strategies to optimize the use of thermal imaging in field conditions are also proposed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the recent prolonged drought conditions in many parts of Australia it is increasingly recognised that many groundwater systems are under stress. Although this is obvious for systems that are utilised for intensive irrigation many other groundwater systems are also impacted.Management strategies are highly variable to non-existent. Policy and regulation are also often inadequate, and are reactive or politically driven. In addition, there is a wide range of opinion by water users and other stakeholders as to what is “reasonable”management practice. These differences are often related to the “value”that is put on the groundwater resource. Opinions vary from “our right to free water”to an awareness that without effective management the resource will be degraded. There is also often misunderstanding of surface water-groundwater linkages, recharge processes, and baseflow to drainage systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 3.04 Mg C.ha(-1) yr(-1), with a mean of 0.54 Mg C.ha(-1).yr(-1) and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.