696 resultados para Irrigation engineering
Resumo:
O presente documento enquadra-se no âmbito do trabalho final do mestrado (TFM) do curso de Engenharia Civil, na área de especialização de Hidráulica, do Instituto Superior de Engenharia de Lisboa, sob a forma de um projeto na fase de estudo prévio com o título ―Gestão Sustentável da Água no empreendimento turístico Parque de Campismo da Ilha do Pessegueiro situado em Porto Covo - Região de Turismo do Alentejo‖. Este trabalho é constituído essencialmente por 5 partes. Sendo a primeira uma breve introdução às questões a abordar, a segunda corresponde à discrição teórica do uso eficiente da água baseando-se no PNEUA (Programa nacional para o uso eficiente da água). Já a terceira parte é relativa ao atual sistema de utilização da água no Parque de campismo da ilha do pessegueiro (PCIP), sendo a quarta o estudo do desenvolvimento do projecto para a gestão eficiente da água no empreendimento e a quinta parte o estudo de viabilidade económica e financeira a implementar no projecto. Para além da implementação de medidas de poupança são também objetivos principais deste trabalho a reutilização da água através da recolha, o tratamento e armazenamento das águas residuais e aproveitamento das águas pluviais para posterior abastecimento do sistema de utilização em descargas sanitárias, lavagem de pavimentos e regas de espaços verdes. São, portanto, três os subsistemas de gestão eficiente da água que se pretende implementar. Dá-se importância ao estudo de viabilidade económica do projeto, cujo período de retorno do capital investido em capitais próprios e alheios é de seis anos. Este projeto pretende dar apoio técnico ao uso eficiente da água no PCIP, de forma a conseguir por um lado obter vantagens económicas e por outro proteger o ambiente. As vantagens económicas são interessantes para orientar os recursos financeiros para outros investimentos e as questões ambientais são a base de uma campanha, já em curso, para obtenção de certificação energética, em conjunto com outras práticas já em curso, nomeadamente a recolha seletiva de resíduos sólidos para recircular e aproveitamento de energia solar.
Resumo:
ENEGI 2013: Atas do 2º Encontro Nacional de Engenharia e Gestão Industrial, Universidade de Aveiro, 17 e 18 de maio de 2013, Aveiro, Portugal.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
Conferência: 2nd Experiment at International Conference (Exp at)- Univ Coimbra, Coimbra, Portugal - Sep 18-20, 2013
Resumo:
Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.
Resumo:
WorldFIP is standardised as European Norm EN 50170 - General Purpose Field Communication System. Field communication systems (fieldbuses) started to be widely used as the communication support for distributed computer-controlled systems (DCCS), and are being used in all sorts of process control and manufacturing applications within different types of industries. There are several advantages in using fieldbuses as a replacement of for the traditional point-to-point links between sensors/actuators and computer-based control systems. Indeed they concern economical ones (cable savings) but, importantly, fieldbuses allow an increased decentralisation and distribution of the processing power over the field. Typically DCCS have real-time requirements that must be fulfilled. By this, we mean that process data must be transferred between network computing nodes within a maximum admissible time span. WorldFIP has very interesting mechanisms to schedule data transfers. It explicit distinguishes to types of traffic: periodic and aperiodic. In this paper we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis for guaranteeing the real-time requirements of both types of traffic. A major contribution is made in the analysis of worst-case response time of aperiodic transfer requests.
Resumo:
Dissertation elaborated for the partial fulfilment of the requirements of the Master Degree in Civil Engineering in the Speciality Area of Hydarulics
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
The advent of Wireless Sensor Network (WSN) technologies is paving the way for a panoply of new ubiquitous computing applications, some of them with critical requirements. In the ART-WiSe framework, we are designing a two-tiered communication architecture for supporting real-time and reliable communications in WSNs. Within this context, we have been developing a test-bed application, for testing, validating and demonstrating our theoretical findings - a search&rescue/pursuit-evasion application. Basically, a WSN deployment is used to detect, localize and track a target robot and a station controls a rescuer/pursuer robot until it gets close enough to the target robot. This paper describes how this application was engineered, particularly focusing on the implementation of the localization mechanism.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
A significant number of process control and factory automation systems use PROFIBUS as the underlying fieldbus communication network. The process of properly setting up a PROFIBUS network is not a straightforward task. In fact, a number of network parameters must be set for guaranteeing the required levels of timeliness and dependability. Engineering PROFIBUS networks is even more subtle when the network includes various physical segments exhibiting heterogeneous specifications, such as bus speed or frame formats, just to mention a few. In this paper we provide underlying theory and a methodology to guarantee the proper operation of such type of heterogeneous PROFIBUS networks. We additionally show how the methodology can be applied to the practical case of PROFIBUS networks containing simultaneously DP (Decentralised Periphery) and PA (Process Automation) segments, two of the most used commercial-off-the-shelf (COTS) PROFIBUS solutions. The importance of the findings is however not limited to this case. The proposed methodology can be generalised to cover other heterogeneous infrastructures. Hybrid wired/wireless solutions are just an example for which an enormous eagerness exists.
Resumo:
The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. It has been recognized the advantageous use of this mathematical tool in the modelling and control of many dynamical systems. Having these ideas in mind, this paper discusses a FC perspective in the study of the dynamics and control of several systems. The paper investigates the use of FC in the fields of controller tuning, legged robots, electrical systems and digital circuit synthesis.
Resumo:
Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.