946 resultados para Ionic radius
Resumo:
Following a peratization procedure, the exact energy eigenvalues for an attractive Coulomb potential, with a zero-radius hard core, are obtained as roots of a certain combination of di-gamma functions. The physical significance of this entirely new energy spectrum is discussed.
Resumo:
Ionic conductivity and other physico-chemical properties of a soft matter composite electrolyte comprising of a polymer-sodium salt complex and a non-ionic plastic crystal are discussed here. The electrolyte under discussion comprises of polyethyleneoxide (PEO)-sodium triflate (NaCF3SO3) and succinonitrile (SN). Addition of SN to PEO-NaCF3SO3 resulted in significant enhancement in ionic conductivity. At 50% SN concentration (with respect to weight of polymer), the polymer-plastic composite electrolyte room temperature (= 25 degrees C) ionic conductivity was similar to 1.1 x 10(-4) Omega(-1) cm(-1), approximately 45 times higher than PEO-NaCF3SO3. Observations from ac-impedance spectroscopy along with X-ray diffraction, differential scanning calorimetry and Fourier transform inrared spectroscopy strongly suggest the enhancement in the composite is ionicconductivity due to enhanced ion mobility via decrease in crystallinity of PEO. The free standing composite polymer-plastic electrolytes were more compliable than PEO-NaCF3SO3 thus exhibiting no detrimental effects of succinonitrile addition on the mechanical stability of PEO-NaCF3SO3. We propose that the exploratory PEO-NaCF3SO3-SN system.discussed here will eventually be developed as a prototype electrolyte.for sodium-sulfur batteries capable of operating at ambient and.sub-ambient conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The compound Bi3W2O10.5 was synthesized by the solid-state technique from Bi2O3 and WO3 in stoichiometric quantities. Single crystals were grown by the melt-cooling technique and the crystal structure was solved in the tetragonal 141in space group with a = 3.839 (1) A, c = 16-3S2 (5) A, V = 241.4 (1) angstrom(3), Z = 4 and was refined to an R index of 0.0672. The structure represents a modification of the Aurivillius phase and consists of [Bi2O2](2+) units separated by WO8 polyhedra. a.c. impedance studies indicate oxide ion conductivity of 2.91 10(-5) cm(-1) at 600 degrees C.
Resumo:
Ionic conductivity measurements have been made on pure, copper-doped and cadmium-doped single crystals. Dielectric measurements in the frequency range 30Hz–100Hz showed that there was no anomalously to be (0.64 ± 0.02) eV and migration energies for silver ion intersitials and vacancies in the c direction to be (0.41 ± 0.02) eV and (0.50 ± 0.02) eV respectively. ESR measurements have shown that copper exists as Cu+ in these crystals. Dielectric measurements in the frequency range (OHz–100KHz showed that there was no anomalously high value for ε as reported earlier.
Resumo:
Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a jelly-like consistency The composite ionic conductivity measured over the range -30 C to 60 C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 degrees C up to 50 wt% PMMA) While addition of LiTFSI to IL does not influence the glass T-g and T-m melting temperature significantly dispersion of PMMA (especially at higher contents) resulted in increase in T-g and disappearance of T-m In general the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport However for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other Because of the beneficial physico-chemical properties and interesting ion transport mechanism we envisage the present soft matter electrolytes to be promising for application in electrochromic devices (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The radius of an elastic-plastic boundary was measured by the strain gage method around the cold-worked region in L72-aluminum alloy. The relative radial expansion was varied from 2.5 to 6.5 percent during the cold-working process using mandrel and split sleeve. The existing theoretical studies in this area are reviewed. The experimental results are compared with existing experimental data of various investigators and with various theoretical formulations. A model is developed to predict the radius of elastic-plastic boundary, and the model is assessed by comparing with the present experiments.
Resumo:
In β-AgI and β-Ag3SI the ionic conductivity has been measured at frequencies from 1kHz to 2.6 GHz and from 10 MHz to 10 THz, respectively. In both phases we observe a conductivity increase of some orders of magnitude, due to localized types of motion of the silver ions. In β-AgI the increase is found at about 1 MHz and reflects cooperative back-and-forth hopping processes between adjacent tetrahedral sites. In β-Ag3SI the phenomenon occurs at microwave frequencies. Here it is caused by a non-hopping, non-periodic localized Ag+-motion within shallow potentials.
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.
Resumo:
A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.
Resumo:
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.
Resumo:
UV-visible spectra of polyaniline and its polyelectrolyte complexes show evidence for different degree of protonation when equilibrated with different ionic strength at a particular pH, due to the Donnan effect. For pure polyaniline, when the fixed charge on the film is positive, protonation is higher ionic strength whereas, when the polyaniline is doped with a polyelectrolyte resulting in a net negative fixed charge on the film, the protonation is less at higher ionic strength.
Resumo:
In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.