863 resultados para Interval Linear Systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model predictive controller (MPC) is proposed, which is robustly stable for some classes of model uncertainty and to unknown disturbances. It is considered as the case of open-loop stable systems, where only the inputs and controlled outputs are measured. It is assumed that the controller will work in a scenario where target tracking is also required. Here, it is extended to the nominal infinite horizon MPC with output feedback. The method considers an extended cost function that can be made globally convergent for any finite input horizon considered for the uncertain system. The method is based on the explicit inclusion of cost contracting constraints in the control problem. The controller considers the output feedback case through a non-minimal state-space model that is built using past output measurements and past input increments. The application of the robust output feedback MPC is illustrated through the simulation of a low-order multivariable system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables - possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we devise a separation principle for the finite horizon quadratic optimal control problem of continuous-time Markovian jump linear systems driven by a Wiener process and with partial observations. We assume that the output variable and the jump parameters are available to the controller. It is desired to design a dynamic Markovian jump controller such that the closed loop system minimizes the quadratic functional cost of the system over a finite horizon period of time. As in the case with no jumps, we show that an optimal controller can be obtained from two coupled Riccati differential equations, one associated to the optimal control problem when the state variable is available, and the other one associated to the optimal filtering problem. This is a separation principle for the finite horizon quadratic optimal control problem for continuous-time Markovian jump linear systems. For the case in which the matrices are all time-invariant we analyze the asymptotic behavior of the solution of the derived interconnected Riccati differential equations to the solution of the associated set of coupled algebraic Riccati equations as well as the mean square stabilizing property of this limiting solution. When there is only one mode of operation our results coincide with the traditional ones for the LQG control of continuous-time linear systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper considers the structural identifiability of a parent–metabolite pharmacokinetic model for ivabradine and one of its metabolites. The model, which is linear, is considered initially for intravenous administration of ivabradine, and then for a combined intravenous and oral administration. In both cases, the model is shown to be unidentifiable. Simplification of the model (for both forms of administration) to that proposed by Duffull et al. (1) results in a globally structurally identifiable model. The analysis could be applied to the modeling of any drug undergoing first-pass metabolism, with plasma concentrations available from drug and metabolite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This note gives a theory of state transition matrices for linear systems of fuzzy differential equations. This is used to give a fuzzy version of the classical variation of constants formula. A simple example of a time-independent control system is used to illustrate the methods. While similar problems to the crisp case arise for time-dependent systems, in time-independent cases the calculations are elementary solutions of eigenvalue-eigenvector problems. In particular, for nonnegative or nonpositive matrices, the problems at each level set, can easily be solved in MATLAB to give the level sets of the fuzzy solution. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O risco associado a um navio em manobra pode ser avaliado pela probabilidade do movimento vertical de um ponto do navio ultrapassar um determinado limiar pré-definido. Essa excedência pode originar danos tanto no próprio navio como nas estruturas portuárias envolventes. Este trabalho surge no seguimento de um estudo efectuado no Laboratório Nacional de Engenharia Civil (LNEC), no qual foi desenvolvido um conjunto de ferramentas de avaliação da função resposta do navio quando sujeito à agitação marítima e, partindo dessas ferramentas, foi obtido um procedimento para determinação do espectro dos movimentos verticais de um ponto de um navio parado sujeito àquele estado de agitação (Rodrigues, 2010). No presente estudo, estendeu-se esse procedimento de modo a avaliar a influência da velocidade de avanço do navio no espectro dos movimentos verticais do mesmo. O percurso de entrada do “N/M Fernão Gomes” no porto da Praia da Vitória foi o caso de estudo considerado. A agitação marítima incidente no navio cobriu o período de Janeiro de 2009 a Dezembro de 2010 e foi obtida com base no modelo previsão de escala regional (WAVEWATCH III) e posteriormente transferida para o interior do porto com o recurso a modelos numéricos de propagação de ondas (SWAN e DREAMS). Foi também assumido que a altura do movimento vertical do navio segue uma distribuição de Rayleigh, a qual possibilita a determinação da altura significativa desse movimento vertical, bem como a implementação de um procedimento para determinar a probabilidade de a altura do movimento vertical do navio não exceder um limiar pré-definido e consequentemente mostrar, através da análise dos resultados, a influência da velocidade de avanço do navio. Da análise dos resultados concluiu-se que a velocidade tem uma influência significativa nos resultados. No final avaliou-se a contribuição dos resultados anteriormente determinados, para a análise do risco associado aos movimentos verticais do navio quando em manobra no porto em estudo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors extend their earlier work on the stability of a reacting binary polymer blend with respect to demixing [D. J. Read, Macromolecules 31, 899 (1998); P. I. C. Teixeira , Macromolecules 33, 387 (2000)] to the case where one of the polymers is rod-like and may order nematically. As before, the authors combine the random phase approximation for the free energy with a Markov chain model for the chemistry to obtain the spinodal as a function of the relevant degrees of reaction. These are then calculated by assuming a simple second-order chemical kinetics. Results are presented, for linear systems, which illustrate the effects of varying the proportion of coils and rods, their relative sizes, and the strength of the nematic interaction between the rods. (c) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signal Processing, vol. 86, nº 10

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IET Control Theory & Applications, Vol. 1, Nº 1

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proceedings of the International Conference on Computational Cybernetics, Vienna University of Technology, August 30 - September 1, 2004

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The theory of fractional calculus goes back to the beginning of thr throry of differential calculus but its inherent complexity postponed the applications of the associated concepts. In the last decade the progress in the areas of chaos and fractals revealed subtle relationships with the fractional calculus leading to an increasing interest in the development of the new paradigm. In the area of automaticcontrol preliminary work has already been carried out but the proposed algorithms are restricted to the frequency domain. The paper discusses the design of fractional-order discrete-time controllers. The algorithms studied adopt the time domein, which makes them suited for z-transform analusis and discrete-time implementation. The performance of discrete-time fractional-order controllers with linear and non-linear systems is also investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.