876 resultados para Interference Task
Resumo:
We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.
Resumo:
Objectives. Intrusive memories of extreme trauma can disrupt a stepwise approach to imaginal exposure. Concurrent tasks that load the visuospatial sketchpad (VSSP) of working memory reduce the vividness of recalled images. This study tested whether relief of distress from competing VSSP tasks during imaginal exposure is at the cost of impaired desensitization. Design. This study examined repeated exposure to emotive memories using 18 unselected undergraduates and a within-subjects design with three exposure conditions (Eye Movement, Visual Noise, Exposure Alone) in random, counterbalanced order. Method. At baseline, participants recalled positive and negative experiences, and rated the vividness and emotiveness of each image. A different positive and negative recollection was then used for each condition. Vividness and emotiveness were rated after each of eight exposure trials. At a post-exposure session 1 week later, participants rated each image without any concurrent task. Results. Consistent with previous research, vividness and distress during imaging were lower during Eye Movements than in Exposure Alone, with passive visual interference giving intermediate results. A reduction in emotional responses from Baseline to Post was of similar size for the three conditions. Conclusion. Visuospatial tasks may offer a temporary response aid for imaginal exposure without affecting desensitization.
Resumo:
In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.
Resumo:
Genetic and environmental sources of covariation among the P3(00) and online performance elicited in a delayed-response working memory task, and psychometric IQ assessed by the multidimensional aptitude battery, were examined in an adolescent twin sample. An association between frontal P3 latency and task performance (phenotypic r = -0.33; genotypic r = -0.49) was indicated, with genes (i.e. twin status) accounting for a large part of the covariation ( > 70%). In contrast, genes influencing P3 amplitude mediated only a small part (2%) of the total genetic variation in task performance. While task performance mediated 15% of the total genetic variation in IQ (phenotypic r = 0.22; genotypic r = 0.39) there was no association between P3 latency and IQ or P3 amplitude with IQ. The findings provide some insight into the inter-relationships among psychophysiological, performance and psychometric measures of cognitive ability, and provide support for a levels-of-processing genetic model of cognition where genes act on specific sub-components of cognitive processes.
Resumo:
We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.
Resumo:
The suitable use of an array antenna at the base station of a wireless communications system can result in improvement in the signal-to-interference ratio (SIR). In general, the SIR is a function of the direction of arrival of the desired signal and depends on the configuration of the array, the number of elements, and their spacing. In this paper, we consider a uniform linear array antenna and study the effect of varying the number of its elements and inter-element spacing on the SIR performance. (C) 2002 Wiley Periodicals, Inc.
Resumo:
The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.
Resumo:
The conditions under which blink startle facilitation can be found in anticipation of a reaction time task were investigated to resolve inconsistent findings across previous studies. Four groups of participants (n = 64) were presented with two visual stimuli, one predicting a reaction time task (S+) and the second presented alone (S-). Participants were asked to make a speeded response to the offset of the S+ (S1 paradigm) or were asked to respond to a tactile stimulus presented at the offset of the S+ (S1-S2 paradigm). Half of the participants in each paradigm condition received performance feedback. Overall, blink latency shortening and magnitude facilitation were larger during S+ than during S-. More detailed analyses, however, found these differences to be reliable only in the Feedback conditions. Ratings of S+ pleasantness did not change across the experiment. Electrodermal responses to S+ were larger than to S- in all groups with differential electrodermal responding emerging earlier in the S1 paradigm. Taken together, the data support the notion that startle facilitation can occur during non-aversive Pavlovian conditioning. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The present series of experiments was designed to assess whether rule-based accounts of Pavlovian learning can account for cue competition effects observed after elemental training. All experiments involved initial differential conditioning training with A-US and B alone presentations. Miscuing refers to the fact that responding to A is impaired after one B-US presentation whereas interference is the impairment of responding to A after presentation of C-US pairings. Omission refers to the effects on B of A alone presentations. Experiments 1-2a provided clear evidence for miscuing whereas interference was not found after 1, 5 or 10 C-US pairings. Moreover, Experiments 3 and 3a found only weak evidence for interference in an A-US, B I C-US, D I A design used previously to show the effect. Experiments 4 and 5 failed to find any effect of US omission after one or five omission trials. The present results indicate that miscuing is more robust than is the interference effect. Moreover, the asymmetrical effects of US miscuing and US omission are difficult to accommodate within rule-based accounts of Pavlovian conditioning. (C) 2002 Elsevier Science (USA). All rights reserved.