881 resultados para Interaction modeling. Model-based development. Interaction evaluation.
Resumo:
Manual curation has long been held to be the gold standard for functional annotation of DNA sequence. Our experience with the annotation of more than 20,000 full-length cDNA sequences revealed problems with this approach, including inaccurate and inconsistent assignment of gene names, as well as many good assignments that were difficult to reproduce using only computational methods. For the FANTOM2 annotation of more than 60,000 cDNA clones, we developed a number of methods and tools to circumvent some of these problems, including an automated annotation pipeline that provides high-quality preliminary annotation for each sequence by introducing an uninformative filter that eliminates uninformative annotations, controlled vocabularies to accurately reflect both the functional assignments and the evidence supporting them, and a highly refined, Web-based manual annotation tool that allows users to view a wide array of sequence analyses and to assign gene names and putative functions using a consistent nomenclature. The ultimate utility of our approach is reflected in the low rate of reassignment of automated assignments by manual curation. Based on these results, we propose a new standard for large-scale annotation, in which the initial automated annotations are manually investigated and then computational methods are iteratively modified and improved based on the results of manual curation.
Resumo:
The object of this work was to further develop the idea introduced by Muaddi et al (1981) which enables some of the disadvantages of earlier destructive adhesion test methods to be overcome. The test is non-destructive in nature but it does need to be calibrated against a destructive method. Adhesion is determined by measuring the effect of plating on internal friction. This is achieved by determining the damping of vibrations of a resonating specimen before and after plating. The level of adhesion was considered by the above authors to influence the degree of damping. In the major portion of the research work the electrodeposited metal was Watt's nickel, which is ductile in nature and is therefore suitable for peel adhesion testing. The base metals chosen were aluminium alloys S1C and HE9 as it is relatively easy to produce varying levels of adhesion between the substrate and electrodeposited coating by choosing the appropriate process sequence. S1C alloy is the commercially pure aluminium and was used to produce good adhesion. HE9 aluminium alloy is a more difficult to plate alloy and was chosen to produce poorer adhesion. The "Modal Testing" method used for studying vibrations was investigated as a possible means of evaluating adhesion but was not successful and so research was concentrated on the "Q" meter. The method based on the use of a "Q" meter involves the principle of exciting vibrations in a sample, interrupting the driving signal and counting the number of oscillations of the freely decaying vibrations between two known preselected amplitudes of oscillations. It was not possible to reconstruct a working instrument using Muaddi's thesis (1982) as it had either a serious error or the information was incomplete. Hence a modified "Q" meter had to be designed and constructed but it was then difficult to resonate non-magnetic materials, such as aluminium, therefore, a comparison before and after plating could not be made. A new "Q" meter was then developed based on an Impulse Technique. A regulated miniature hammer was used to excite the test piece at the fundamental mode instead of an electronic hammer and test pieces were supported at the two predetermined nodal points using nylon threads. This instrument developed was not very successful at detecting changes due to good and poor pretreatments given before plating, however, it was more sensitive to changes at the surface such as room temperature oxidation. Statistical analysis of test results from untreated aluminium alloys show that the instrument is not always consistent, the variation was even bigger when readings were taken on different days. Although aluminium is said to form protective oxides at room temperature there was evidence that the aluminium surface changes continuously due to film formation, growth and breakdown. Nickel plated and zinc alloy immersion coated samples also showed variation in Q with time. In order to prove that the variations in Q were mainly due to surface oxidation, aluminium samples were lacquered and anodised Such treatments enveloped the active surfaces reacting with the environment and the Q variation with time was almost eliminated especially after hard anodising. This instrument detected major differences between different untreated aluminium substrates.Also Q values decreased progressively as coating thicknesses were increased. This instrument was also able to detect changes in Q due to heat-treatment of aluminium alloys.
Resumo:
The aim of this study was to develop and characterize an intranasal delivery system for amantadine hydrochloride (AMT). Optimal formulations consisted of a thermosensitive polymer Pluronic® 127 and either carboxymethyl cellulose or chitosan which demonstrated gel transition at nasal cavity temperatures (34 ± 1°C). Rheologically, the loss tangent (Tan δ) confirmed a 3-stage gelation phenomena at 34 ± 1°C and non-Newtonian behavior. Storage of optimized formulation carboxymethyl cellulose and optimal formulation chitosan at 4°C for 8 weeks resulted in repeatable release profiles at 34°C when sampled, with a Fickian mechanism earlier on but moving toward anomalous transport by week 8. Polymers (Pluronic® 127, carboxymethyl cellulose, and chitosan) demonstrated no significant cellular toxicity to human nasal epithelial cells up to 4 mg/mL and up to 1 mM for AMT (IC50: 4.5 ± 0.05 mM). Optimized formulation carboxymethyl cellulose and optimal formulation chitosan demonstrated slower release across an in vitro human nasal airway model (43%-44% vs 79 ± 4.58% for AMT). Using a human nasal cast model, deposition into the olfactory regions (potential nose-to-brain) was demonstrated on nozzle insertion (5 mm), whereas tilting of the head forward (15°) resulted in greater deposition in the bulk of the nasal cavity.
Resumo:
Based on recent advances in autonomic computing, we propose a methodology for the cost-effective development of self-managing systems starting from a model of the resources to be managed and using a general-purpose autonomic architecture.
Resumo:
Tissue engineering of skin based on collagen:PCL biocomposites using a designed co-culture system is reported. The collagen:PCL biocomposites having collagen:PCL (w/w) ratios of 1:4, 1:8, and 1:20 have been proven to be biocompatible materials to support both adult normal human epidermal Keratinocyte (NHEK) and mouse 3T3 fibroblast growth in cell culture, respectively, by Dai, Coombes, et al. in 2004. Films of collagen:PCL biocomposites were prepared using non-crosslinking method by impregnation of lyophilized collagen mats with PCL/dichloromethane solutions followed by solvent evaporation. To mimic the dermal/epidermal structure of skin, the 1:20 collagen:PCL biocomposites were selected for a feasibility study of a designed co-culture technique that would subsequently be used for preparing fibroblast/biocomposite/keratinocyte skin models. A 55.3% increase in cell number was measured in the designed co-culture system when fibroblasts were seeded on both sides of a biocomposite film compared with cell culture on one surface of the biocomposite in the feasibility study. The co-culture of human keratinocytes and 3T3 fibroblasts on each side of the membrane was therefore studied using the same co-culture system by growing keratinocytes on the top surface of membrane for 3 days and 3T3 fibroblasts underneath the membrane for 6 days. Scanning electron microscopy (SEM) and immunohistochemistry assay revealed good cell attachment and proliferation of both human keratinocytes and 3T3 fibroblasts with these two types of cells isolated well on each side of the membrane. Using a modified co-culture technique, a co-cultured skin model presenting a confluent epidermal sheet on one side of the biocomposite film and fibroblasts populated on the other side of the film was developed successfully in co-culture system for 28 days under investigations by SEM and immunohistochemistry assay. Thus, the design of a co-culture system based on 1:20 (w/w) collagen:PCL biocomposite membranes for preparation of a bi-layered skin model with differentiated epidermal sheet was proven in principle. The approach to skin modeling reported here may find application in tissue engineering and screening of new pharmaceuticals. © 2005 Elsevier Inc. All rights reserved.
Resumo:
IEEE 802.16 standard specifies a contention based bandwidth request scheme for best-effort and non-real time polling services in Point-to-MultiPoint (PMP) architecture. In this letter we propose an analytical model for the scheme and study how the performances of bandwidth efficiency and channel access delay change with the contention window size, the number of contending subscriber stations, the number of slots allocated for bandwidth request and data transmission. Simulations validate its high accuracy. © 2007 IEEE.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Software development guidelines are a set of rules which can help improve the quality of software. These rules are defined on the basis of experience gained by the software development community over time. This paper discusses a set of design guidelines for model-based development of complex real-time embedded software systems. To be precise, we propose nine design conventions, three design patterns and thirteen antipatterns for developing UML-RT models. These guidelines have been identified based on our analysis of around 100 UML-RT models from industry and academia. Most of the guidelines are explained with the help of examples, and standard templates from the current state of the art are used for documenting the design rules.
Resumo:
Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.
Resumo:
The problem: Around 300 million people worldwide have asthma and prevalence is increasing. Support for optimal self-management can be effective in improving a range of outcomes and is cost effective, but is underutilised as a treatment strategy. Supporting optimum self-management using digital technology shows promise, but how best to do this is not clear. Aim: The purpose of this project was to explore the potential role of a digital intervention in promoting optimum self-management in adults with asthma. Methods: Following the MRC Guidance on the Development and Evaluation of Complex Interventions which advocates using theory, evidence, user testing and appropriate modelling and piloting, this project had 3 phases. Phase 1: Examination of the literature to inform phases 2 and 3, using systematic review methods and focussed literature searching. Phase 2: Developing the Living Well with Asthma website. A prototype (paper-based) version of the website was developed iteratively with input from a multidisciplinary expert panel, empirical evidence from the literature (from phase 1), and potential end users via focus groups (adults with asthma and practice nurses). Implementation and behaviour change theories informed this process. The paper-based designs were converted to the website through an iterative user centred process (think aloud studies with adults with asthma). Participants considered contents, layout, and navigation. Development was agile using feedback from the think aloud sessions immediately to inform design and subsequent think aloud sessions. Phase 3: A pilot randomised controlled trial over 12 weeks to evaluate the feasibility of a Phase 3 trial of Living Well with Asthma to support self-management. Primary outcomes were 1) recruitment & retention; 2) website use; 3) Asthma Control Questionnaire (ACQ) score change from baseline; 4) Mini Asthma Quality of Life (AQLQ) score change from baseline. Secondary outcomes were patient activation, adherence, lung function, fractional exhaled nitric oxide (FeNO), generic quality of life measure (EQ-5D), medication use, prescribing and health services contacts. Results: Phase1: Demonstrated that while digital interventions show promise, with some evidence of effectiveness in certain outcomes, participants were poorly characterised, telling us little about the reach of these interventions. The interventions themselves were poorly described making drawing definitive conclusions about what worked and what did not impossible. Phase 2: The literature indicated that important aspects to cover in any self-management intervention (digital or not) included: asthma action plans, regular health professional review, trigger avoidance, psychological functioning, self-monitoring, inhaler technique, and goal setting. The website asked users to aim to be symptom free. Key behaviours targeted to achieve this include: optimising medication use (including inhaler technique); attending primary care asthma reviews; using asthma action plans; increasing physical activity levels; and stopping smoking. The website had 11 sections, plus email reminders, which promoted these behaviours. Feedback during think aloud studies was mainly positive with most changes focussing on clarification of language, order of pages and usability issues mainly relating to navigation difficulties. Phase 3: To achieve our recruitment target 5383 potential participants were invited, leading to 51 participants randomised (25 to intervention group). Age range 16-78 years; 75% female; 28% from most deprived quintile. Nineteen (76%) of the intervention group used the website for an average of 23 minutes. Non-significant improvements in favour of the intervention group observed in the ACQ score (-0.36; 95% confidence interval: -0.96, 0.23; p=0.225), and mini-AQLQ scores (0.38; -0.13, 0.89; p=0.136). A significant improvement was observed in the activity limitation domain of the mini-AQLQ (0.60; 0.05 to 1.15; p = 0.034). Secondary outcomes showed increased patient activation and reduced reliance on reliever medication. There was no significant difference in the remaining secondary outcomes. There were no adverse events. Conclusion: Living Well with Asthma has been shown to be acceptable to potential end users, and has potential for effectiveness. This intervention merits further development, and subsequent evaluation in a Phase III full scale RCT.
Resumo:
International audience
Resumo:
Aquaculture has been expanded rapidly to become a major commercial and food-producing sector worldwide in recent decade. In parallel, viral diseases rapidly spread among farms causing enormous economic losses. The accurate detection of pathogens at early stages of infection is a key point for disease control in aquaculture. Spring Viraemia of Carp Virus (SVCV) is a very severe pathogen of carp fishes in different parts of the world and is categorized as a reportable listed disease in the annual published list of World Organization for animal Health (OIE). The objective of this study was to develop and evaluate RT- PCR test for detecting SVC virus and also the sensitivity and specificity of this test. A semi nested RT- PCR was designed using combination of three primers: two external (SVCF , SVCR) and one internal (SVCS) primers which based on conserved region of G gen. The specificity of designed primers (only external ones) by examination on Viral Hemorrhagic Septicemia Virus (VHSV) and Infectious Hematopoietic Necrosis Virus (IHNV) was confirmed. For optimizing of the PCR test, primer concentration, primer annealing temperature, cycle number and Mgcl2 concentration were surveyed. Also for validity test, prevention of false negative and Assurance of its accuracy, a competitive internal control (mimic) designed and its suitable concentration was defined. Evaluation of the sensitivity of designed test were conducted first by comparing the different commercially available RNA isolation guidelines, two guidelines: isotiocyanate phenol–chloroform based protocols (RNX–Plus Iran, Iq2000 kit Taiwan ) and two column based protocols (Cinna pure RNA Iran , high pure viral RNA kit, Roche Germany ). The results indicated that the column based protocols (Roche method and Cinna pure), yield 36.77 ng/μl and 16/47 ng/μl RNA concentration respectively, which were significantly higher than other protocols(P<0.05). Then for evaluation of extracted RNA sensitivity, Serial dilution of SVCV strain 56.70 grown in EPC (1.9×105 TCID50/ml) was examined To compare sensitivity. Extracted RNA from serial dilution with stone's primers and commercial IQ-2000 kit were examined simultaneously. The result indicated that designed semi- nested RT- PCR was able to recognize SVC virus to 10-4 dilution and stone's primer recognize to 10-3 dilution whereas Iq-2000 commercial kit did not recognized in any dilution. In high virus titer in designed test two DNA band (462 bp and 266 bp) produced, and by decreasing virus titer 462 bp was omitted. In low virus titer or lack of virus, just DNA band (mimic) 729 bp can propagate. After designing and optimizing PCR test, a total of 400 suspected cultured Cyprinus carpio with high mortality from 4 aquaculture zone of Khuzestan province were collected and tested for SVCV during 2012- 2013 using developed PCR method and IQ- 2000. The results indicated that SVC virus was not observed in samples using both methods.
Resumo:
Part 6: Engineering and Implementation of Collaborative Networks
Resumo:
Estimating un-measurable states is an important component for onboard diagnostics (OBD) and control strategy development in diesel exhaust aftertreatment systems. This research focuses on the development of an Extended Kalman Filter (EKF) based state estimator for two of the main components in a diesel engine aftertreatment system: the Diesel Oxidation Catalyst (DOC) and the Selective Catalytic Reduction (SCR) catalyst. One of the key areas of interest is the performance of these estimators when the catalyzed particulate filter (CPF) is being actively regenerated. In this study, model reduction techniques were developed and used to develop reduced order models from the 1D models used to simulate the DOC and SCR. As a result of order reduction, the number of states in the estimator is reduced from 12 to 1 per element for the DOC and 12 to 2 per element for the SCR. The reduced order models were simulated on the experimental data and compared to the high fidelity model and the experimental data. The results show that the effect of eliminating the heat transfer and mass transfer coefficients are not significant on the performance of the reduced order models. This is shown by an insignificant change in the kinetic parameters between the reduced order and 1D model for simulating the experimental data. An EKF based estimator to estimate the internal states of the DOC and SCR was developed. The DOC and SCR estimators were simulated on the experimental data to show that the estimator provides improved estimation of states compared to a reduced order model. The results showed that using the temperature measurement at the DOC outlet improved the estimates of the CO , NO , NO2 and HC concentrations from the DOC. The SCR estimator was used to evaluate the effect of NH3 and NOX sensors on state estimation quality. Three sensor combinations of NOX sensor only, NH3 sensor only and both NOX and NH3 sensors were evaluated. The NOX only configuration had the worst performance, the NH3 sensor only configuration was in the middle and both the NOX and NH3 sensor combination provided the best performance.