877 resultados para Intelligent diagnostics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Intelligent Decision Support System (IDSS), also called an expert system, is explained. It was then applied to choose the right composition and firing temperature of a ZnO based varistor. 17 refs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bad breath or oral malodour can be related to gingival diseases, trimethylaminuria, various inflammation diseases of upper respiratory tract, foreign bodies in nasal cavity etc. Bad breath is usually, in 85 % to 95 % of cases, inflicted by gram negative anaerobic bacteria in tongue coating. These bacteria have a tendency of producing foul-smelling sulphur containing gases called volatile sulphur compounds or VSC. Main cause of bad breath is parodontitis or postnasal drip into posterior part of the tongue. Detecting bad breath is most efficiently done by organoleptic method. By skilled analyser the reason for oral malodour can be determined with great accuracy. For scientific study the most effective method is gas chromatography (GC) with flame photometric detector (FPD). With it almost every component of exhaled air can be detected both quantitative and qualitative. Effective chairside methods include portable sulphur monitors and saliva tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of the high pressure oxygen-sputtering plasma in the pressure range 0.8–2.4 mbar have been studied using the Langmuir probe technique. The variation in plasma parameters such as positive ion density, electron density, mean electron energy and floating potential with pressure and temperature has been investigated. It has been observed that the positive ion density increases at high substrate temperatures whereas the negative ion density decreases. The study of the variation in mean electron energy and floating potential also indicated the possibility that the number of negative ions is less when the substrates are at elevated temperatures. Since the negative ions are supposed to cause re-sputtering and make the films off-stoichiometric, the reduction in the negative ion density as observed at elevated substrate temperatures is better suited for depositing stoichiometric YBa2Cu3O7−δ superconducting thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management of large projects, especially the ones in which a major component of R&D is involved and those requiring knowledge from diverse specialised and sophisticated fields, may be classified as semi-structured problems. In these problems, there is some knowledge about the nature of the work involved, but there are also uncertainties associated with emerging technologies. In order to draw up a plan and schedule of activities of such a large and complex project, the project manager is faced with a host of complex decisions that he has to take, such as, when to start an activity, for how long the activity is likely to continue, etc. An Intelligent Decision Support System (IDSS) which aids the manager in decision making and drawing up a feasible schedule of activities while taking into consideration the constraints of resources and time, will have a considerable impact on the efficient management of the project. This report discusses the design of an IDSS that helps in project planning phase through the scheduling phase. The IDSS uses a new project scheduling tool, the Project Influence Graph (PIG).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measured health signals incorporate significant details about any malfunction in a gas turbine. The attenuation of noise and removal of outliers from these health signals while preserving important features is an important problem in gas turbine diagnostics. The measured health signals are a time series of sensor measurements such as the low rotor speed, high rotor speed, fuel flow, and exhaust gas temperature in a gas turbine. In this article, a comparative study is done by varying the window length of acausal and unsymmetrical weighted recursive median filters and numerical results for error minimization are obtained. It is found that optimal filters exist, which can be used for engines where data are available slowly (three-point filter) and rapidly (seven-point filter). These smoothing filters are proposed as preprocessors of measurement delta signals before subjecting them to fault detection and isolation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intelligent computer aided defect analysis (ICADA) system, based on artificial intelligence techniques, has been developed to identify design, process or material parameters which could be responsible for the occurrence of defective castings in a manufacturing campaign. The data on defective castings for a particular time frame, which is an input to the ICADA system, has been analysed. It was observed that a large proportion, i.e. 50-80% of all the defective castings produced in a foundry, have two, three or four types of defects occurring above a threshold proportion, say 10%. Also, a large number of defect types are either not found at all or found in a very small proportion, with a threshold value below 2%. An important feature of the ICADA system is the recognition of this pattern in the analysis. Thirty casting defect types and a large number of causes numbering between 50 and 70 for each, as identified in the AFS analysis of casting defects-the standard reference source for a casting process-constituted the foundation for building the knowledge base. Scientific rationale underlying the formation of a defect during the casting process was identified and 38 metacauses were coded. Process, material and design parameters which contribute to the metacauses were systematically examined and 112 were identified as rootcauses. The interconnections between defects, metacauses and rootcauses were represented as a three tier structured graph and the handling of uncertainty in the occurrence of events such as defects, metacauses and rootcauses was achieved by Bayesian analysis. The hill climbing search technique, associated with forward reasoning, was employed to recognize one or several root causes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fuzzy logic intelligent system is developed for gas-turbine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. These four measurements are also called the cockpit parameters and are typically found in almost all older and newer jet engines. The fuzzy logic system uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. It automates the reasoning process of an experienced powerplant engineer. Tests with simulated data show that the fuzzy system isolates faults with an accuracy of 89% with only the four cockpit measurements. However, if additional pressure and temperature probes between the compressors and before the burner, which are often found in newer jet engines, are considered, the fault isolation accuracy rises to as high as 98%. In addition, the additional sensors are useful in keeping the fault isolation system robust as quality of the measured data deteriorates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are, in general, estimated by fitting the theoretical models to a field monitoring or laboratory experimental data. Double-reservoir diffusion (Transient Through-Diffusion) experiments are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These design parameters are estimated by manual parameter adjusting techniques (also called eye-fitting) like Pollute. In this work an automated inverse model is developed to estimate the mass transport parameters from transient through-diffusion experimental data. The proposed inverse model uses particle swarm optimization (PSO) algorithm which is based on the social behaviour of animals for finding their food sources. Finite difference numerical solution of the transient through-diffusion mathematical model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation.The working principle of the new solver is demonstrated by estimating mass transport parameters from the published transient through-diffusion experimental data. The estimated values are compared with the values obtained by existing procedure. The present technique is robust and efficient. The mass transport parameters are obtained with a very good precision in less time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an intelligent procurement marketplace for finding the best mix of web services to dynamically compose the business process desired by a web service requester. We develop a combinatorial auction approach that leads to an integer programming formulation for the web services composition problem. The model takes into account the Quality of Service (QoS) and Service Level Agreements (SLA) for differentiating among multiple service providers who are capable of fulfilling a functionality. An important feature of the model is interface aware composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method, system, and computer program product for fault data correlation in a diagnostic system are provided. The method includes receiving the fault data including a plurality of faults collected over a period of time, and identifying a plurality of episodes within the fault data, where each episode includes a sequence of the faults. The method further includes calculating a frequency of the episodes within the fault data, calculating a correlation confidence of the faults relative to the episodes as a function of the frequency of the episodes, and outputting a report of the faults with the correlation confidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses a wave propagation based method for identifying the damages in an aircraft built up structural component such as delamination and skin-stiffener debonding. First, a spectral finite element mode l (SFEM) is developed for modeling wave propagation in general built-up structures by using the concept of assembling 2D spectral plate elements. The developed numerical model is validated using conventional 2-D FEM. Studies are performed to capture the mode coupling,that is, the flexural-axial coupling present in the wave responses. Lastly, the damages in these built up structures are then identified using the developed SFEM model and the measured responses using the concept Damage Force Indicator (DFI) technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper details the prediction of blast induced ground vibration, using artificial neural network. The data was generated from five different coal mines. Twenty one different parameters involving rock mass parameters, explosive parameters and blast design parameters, were used to develop the one comprehensive ANN model for five different coal bearing formations. A total of 131 datasets was used to develop the ANN model and 44 datasets was used to test the model. The developed ANN model was compared with the USBM model. The prediction capability to predict blast induced ground vibration, of the comprehensive ANN model was found to be superior.