965 resultados para Integer-Valued Time Series
Resumo:
We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Arima analysis was used to compute cross-correlations between principal component axes that described environmental variables, chlorophyll concentration and zooplankton density for the Sacramento and San Joaquin rivers and Suisun Bay. ... Cross-correlations among the time series may provide information about links between environmental and biological variables within the estuary and the possible influence of climate.
Resumo:
Particle flux in the ocean reflects ongoing biological and geological processes operating under the influence of the local environment. Estimation of this particle flux through sediment trap deployment is constrained by sampler accuracy, particle preservation, and swimmer distortion. Interpretation of specific particle flux is further constrained by indeterminate particle dispersion and the absence of a clear understanding of the sedimentary consequences of ecosystem activity. Nevertheless, the continuous and integrative properties of the particle trap measure, along with the logistic advantage of a long-term moored sampler, provide a set of strategic advantages that appear analogous to those underlying conventional oceanographic survey programs. Emboldened by this perception, several stations along the coast of Southern California and Mexico have been targeted as coastal ocean flux sites (COFS).
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Several snow accumulation time series derived from ice cores and extending over 3 to 5 centuries are examined for spatial and temporal climatic information. ... A significant observation is the widespread depression of net snow accumulation during the latter part of the "Little Ice Age". This initially suggests sea surface temperatures were significantly depressed during the same period. However, prior to this, the available core records indicate generally higher than average precipitation rates. This also implies that influences such as shifted storm tracks or a dustier atmosphere may have been involved. Without additional spatial data coverage, these observations should properly be studied using a coupled (global) ocean/atmosphere GCM.
Resumo:
Much of what we know about the climate of the United States is derived from data gathered under the auspices of the cooperative climate network. Particular aspects of the way observations are taken can have significant influences on the values of climate statistics derived from the data. These influences are briefly reviewed. The purpose of this paper is to examine their effects on climatic time series. Two other items discussed are: (1) a comparison of true (24-hour) means with means derived from maximums and minimums only, and (2) preliminary work on the times of day at which maximums and minimums are set.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Zooplankton biomass and species composition have been sampled since 1985 at a set of standard locations off Vancouver Island. From these data, I have estimated multi-year average seasonal cycles and time series of anomalies from these averages.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Recently, paleoceanographers have been challenged to produce reliable proxies of climate variables that can be incorporated into climate models. In developing proxies using time series of annual radiolarian species fluxes from Santa Barbara Basin, we identify groups of species associated with years of extreme sea surface temperatures and sea level heights.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Our objective is to combine terrestrial and oceanic records for reconstructing West Coast climate. Tree rings and marine laminated sediments provide high-resolution, accurately dated proxy data on the variability of climate and on the productivity of the ocean and have been used to reconstruct precipitation, temperature, sea level pressure, primary productivity, and other large-scale parameters. We present here the latest Santa Barbara basin varve chronology for the twentieth century as well as a newly developed tree-ring chronology for Torrey pine.
Resumo:
In this paper we study parameter estimation for time series with asymmetric α-stable innovations. The proposed methods use a Poisson sum series representation (PSSR) for the asymmetric α-stable noise to express the process in a conditionally Gaussian framework. That allows us to implement Bayesian parameter estimation using Markov chain Monte Carlo (MCMC) methods. We further enhance the series representation by introducing a novel approximation of the series residual terms in which we are able to characterise the mean and variance of the approximation. Simulations illustrate the proposed framework applied to linear time series, estimating the model parameter values and model order P for an autoregressive (AR(P)) model driven by asymmetric α-stable innovations. © 2012 IEEE.
Resumo:
Variational methods are a key component of the approximate inference and learning toolbox. These methods fill an important middle ground, retaining distributional information about uncertainty in latent variables, unlike maximum a posteriori methods (MAP), and yet generally requiring less computational time than Monte Carlo Markov Chain methods. In particular the variational Expectation Maximisation (vEM) and variational Bayes algorithms, both involving variational optimisation of a free-energy, are widely used in time-series modelling. Here, we investigate the success of vEM in simple probabilistic time-series models. First we consider the inference step of vEM, and show that a consequence of the well-known compactness property of variational inference is a failure to propagate uncertainty in time, thus limiting the usefulness of the retained distributional information. In particular, the uncertainty may appear to be smallest precisely when the approximation is poorest. Second, we consider parameter learning and analytically reveal systematic biases in the parameters found by vEM. Surprisingly, simpler variational approximations (such a mean-field) can lead to less bias than more complicated structured approximations.
Resumo:
We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.