756 resultados para Inositol Phosphates
Resumo:
Arachidonoyldiacylglycerol (20:4-DAG) is a second messenger derived from phosphatidylinositol 4,5-bisphosphate and generated by stimulation of glutamate metabotropic receptors linked to G proteins and activation of phospholipase C. 20:4-DAG signaling is terminated by its phosphorylation to phosphatidic acid, catalyzed by diacylglycerol kinase (DGK). We have cloned the murine DGKɛ gene that showed, when expressed in COS-7 cells, selectivity for 20:4-DAG. The significance of DGKɛ in synaptic function was investigated in mice with targeted disruption of the DGKɛ. DGKɛ−/− mice showed a higher resistance to eletroconvulsive shock with shorter tonic seizures and faster recovery than DGKɛ+/+ mice. The phosphatidylinositol 4,5-bisphosphate-signaling pathway in cerebral cortex was greatly affected, leading to lower accumulation of 20:4-DAG and free 20:4. Also, long-term potentiation was attenuated in perforant path–dentate granular cell synapses. We propose that DGKɛ contributes to modulate neuronal signaling pathways linked to synaptic activity, neuronal plasticity, and epileptogenesis.
Resumo:
In salt-stressed ice plants (Mesembryanthemum crystallinum), sodium accumulates to high concentrations in vacuoles, and polyols (myo-inositol, d-ononitol, and d-pinitol) accumulate in the cytosol. Polyol synthesis is regulated by NaCl and involves induction and repression of gene expression (D.E. Nelson, B. Shen, and H.J. Bohnert [1998] Plant Cell 10: 753–764). In the study reported here we found increased phloem transport of myo-inositol and reciprocal increased transport of sodium and inositol to leaves under stress. To determine the relationship between increased translocation and sodium uptake, we analyzed the effects of exogenous application of myo-inositol: The NaCl-inducible ice plant myo-inositol 1-phosphate synthase is repressed in roots, and sodium uptake from root to shoot increases without stimulating growth. Sodium uptake and transport through the xylem was coupled to a 10-fold increase of myo-inositol and ononitol in the xylem. Seedlings of the ice plant are not salt-tolerant, and yet the addition of exogenous myo-inositol conferred upon them patterns of gene expression and polyol accumulation observed in mature, salt-tolerant plants. Sodium uptake and transport through the xylem was enhanced in the presence of myo-inositol. The results indicate an interdependence of sodium uptake and alterations in the distribution of myo-inositol. We hypothesize that myo-inositol could serve not only as a substrate for the production of compatible solutes but also as a leaf-to-root signal that promotes sodium uptake.
Resumo:
Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.
Resumo:
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.
Resumo:
The mammalian phosphatidylinositol transfer proteins (PITP) and the yeast Saccharomyces cerevisiae PITP (SEC14p) that show no sequence homology both catalyze exchange of phosphatidylinositol (PI) between membranes compartments in vitro. In HL-60 cells where the cytosolic proteins are depleted by permeabilization, exogenously added PITPalpha is required to restore G protein-mediated phospholipase Cbeta (PLCbeta) signaling. Recently, a second mammalian PITPbeta form has been described that shows 77% identity to rat PITPalpha. We have examined the ability of the two mammalian PITPs and SEC14p to restore PLC-mediated signaling in cytosol-depleted HL-60 and RBL-2H3 cells. Both PITPalpha and PITPbeta isoforms as well as SEC14p restore G protein-mediated PLCbeta signaling with a similar potency. In RBL-2H3 cells, crosslinking of the IgE receptor by antigen stimulates inositol lipid hydrolysis by tyrosine phosphorylation of PLCgamma1. Permeabilization of RBL cells leads to loss of PLCgamma1 as well as PITP into the extracellular medium and this coincides with loss of antigen-stimulated lipid hydrolysis. Both PLCgamma1 and PITP were required to restore inositol lipid signaling. We conclude that (i) because the PI binding/transfer activities of PITP/SEC14p is the common feature shared by all three transfer proteins, it must be the relevant activity that determines their abilities to restore inositol lipid-mediated signaling and (ii) PITP is a general requirement for inositol lipid hydrolysis regardless of how and which isoform of PLC is activated by the appropriate agonist.
Resumo:
It has been reported that the inositol 1,4,5-trisphosphate receptor subtype 3 is expressed in islet cells and is localized to both insulin and somatostatin granules [Blondel, O., Moody, M. M., Depaoli, A. M., Sharp, A. H., Ross, C. A., Swift, H. & Bell, G. I. (1994) Proc. Natl. Acad. Sci. USA 91, 7777-7781]. This subcellular localization was based on electron microscope immunocytochemistry using antibodies (affinity-purified polyclonal antiserum AB3) directed to a 15-residue peptide of rat inositol trisphosphate receptor subtype 3. We now show that these antibodies cross-react with rat, but not human, insulin. Accordingly, the anti-inositol trisphosphate receptor subtype 3 (AB3) antibodies label electron dense cores of mature (insulin-rich) granules of rat pancreatic beta cells, and rat granule labeling was blocked by preabsorption of the AB3 antibodies with rat insulin. The immunostaining of immature, Golgi-associated proinsulin-rich granules with AB3 antibodies was very weak, indicating that cross-reactivity is limited to the hormone and not its precursor. Also, the AB3 antibodies labeled pure rat insulin crystals grown in vitro but failed to stain crystals grown from pure human insulin. By immunoprecipitation, the antibodies similarly displayed a higher affinity for rat than for human insulin. We could not confirm the labeling of somatostatin granules using AB3 antibodies.
Resumo:
A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.
Resumo:
Transcription of phospholipid biosynthetic genes in the yeast Saccharomyces cerevisiae is maximally derepressed when cells are grown in the absence of inositol and repressed when the cells are grown in its presence. We have previously suggested that this response to inositol may be dictated by regulating transcription of the cognate activator gene, INO2. However, it was also known that cells which harbor a mutant opi1 allele express constitutively derepressed levels of target genes (INO1 and CHO1), implicating the OPI1 negative regulatory gene in the response to inositol. These observations suggested that the response to inositol may involve both regulation of INO2 transcription as well as OPI1-mediated repression. We investigated these possibilities by examining the effect of inositol on target gene expression in a strain containing the INO2 gene under control of the GAL1 promoter. In this strain, transcription of the INO2 gene was regulated in response to galactose but was insensitive to inositol. The expression of the INO1 and CHO1 target genes was still responsive to inositol even though expression of the INO2 gene was unresponsive. However, the level of expression of the INO1 and CHO1 target genes correlated with the level of INO2 transcription. Furthermore, the effect of inositol on target gene expression was eliminated by deleting the OPI1 gene in the GAL1-INO2-containing strain. These data suggest that the OPI1 gene product is the primary target (sensor) of the inositol response and that derepression of INO2 transcription determines the degree of expression of the target genes.
Resumo:
Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids.
Resumo:
Inositol 1,4,5-trisphosphate (IP3) receptors are ligand-gated channels that release intracellular Ca2+ stores in response to the second messenger, IP3. We investigated the potential role of IP3 receptors during nuclear envelope assembly in vitro, using Xenopus egg extracts. Previous work suggested that Ca2+ mobilization is required for nuclear vesicle fusion and implicated IP3 receptor activity. To test the involvement of IP3 receptors using selective reagents, we obtained three distinct polyclonal antibodies to the type 1 IP3 receptor. Pretreatment of membranes with two of the antibodies inhibited IP3-stimulated CA2+ release in vitro and also inhibited nuclear vesicle fusion. One inhibitory serum was directed against 420 residues within the "coupling" domain, which includes several potential regulatory sites. The other inhibitory serum was directed against 95 residues near the C terminus and identifies an inhibitory epitope(s) in this region. The antibodies had no effect on receptor affinity for IP3. Because nuclear vesicle fusion was inhibited by antibodies that block Ca2+ flux, but not by control and preimmune antibodies, we concluded that the activation of IP3 receptors is required for fusion. The signal that activates the channel during fusion is unknown.
Resumo:
Antigen-specific activation of T lymphocytes, via stimulation of the T-cell antigen receptor (TCR) complex, is marked by a rapid and sustained increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). It has been suggested that the second messenger inositol 1,4,5-trisphosphate (IP3) produced after TCR stimulation binds to the IP3 receptor (IP3R), an intracellular Ca(2+)-release channel, and triggers the increase in [Ca2+]i that activates transcription of the gene for T-cell growth factor interleukin 2 (IL-2). However, the role of the IP3R in T-cell signaling and possibly in plasma membrane Ca2+ influx in T cells remains unproven. Stable transfection of T cells (Jurkat) with antisense type 1 IP3R cDNA prevented type 1 IP3R expression, providing a tool for dissecting the role of IP3 signaling during T-cell activation. T cells lacking type 1 IP3R failed to increase [Ca2+]i or produce IL-2 after TCR stimulation. Moreover, depletion of intracellular Ca2+ stores without TCR activation stimulated Ca2+ influx in cells lacking the type 1 IP3R. These results establish that the type 1 IP3R is required for intracellular Ca2+ release that triggers antigen-specific T-cell proliferation but not for plasma membrane Ca2+ influx.
Resumo:
Selenium content of phosphate material from the ocean bottom ranges from 0.2 to 4.7 mg/kg. Phosphorites of various ages from the Atlantic and Pacific Oceans contain 1.0-2.4 mg/kg of selenium, phosphatized coproliths 0.7-1.2 mg/kg, fish bones 0.2-1,4 mg/kg, and bones of marine mammals 0.5-4.7 mg/kg. Recent diatom muds on the shelf of Namibia are considerably enriched in selenium (12.2-13.8 mg/kg) than phosphorites that form within them. Accumulation of selenium in phosphate material on the ocean bottom results from diagenetic reduction, causing it to be precipitated from liquid phase and to concentrate in organic components and sulfides.
Resumo:
Many (bio)geochemical processes that bring about changes in sediment chemistry normally begin at the sediment-water interface, continue at depth within the sediment column and may persist throughout the lifetime of sediments. Because of the differential reactivity of sedimentary phosphate phases in response to diagenesis, dissolution/precipitation and biological cycling, the oxygen isotope ratios of phosphate (d18OP) can carry a distinct signature of these processes, as well as inform on the origin of specific P phases. Here, we present results of sequential sediment extraction (SEDEX) analyses combined with d18OP measurements, aimed at characterizing authigenic and detrital phosphate phases in continental margin sediments from three sites (Sites 1227, 1228 and 1229) along the Peru Margin collected during ODP Leg 201. Our results show that the amount of P in different reservoirs varies significantly in the upper 50 m of the sediment column, but with a consistent pattern, for example, detrital P is highest in siliciclastic-rich layers. The d18OP values of authigenic phosphate vary between 20.2 per mil and 24.8 per mil and can be classified into at least two major groups: authigenic phosphate precipitated at/near the sediment-water interface in equilibrium with paleo-water oxygen isotope ratios (d18Ow) and temperature, and phosphate derived from hydrolysis of organic matter (Porg) with subsequent incomplete to complete re-equlibration and precipitated deeper in the sediments column. The d18OP values of detrital phosphate, which vary from 7.7-15.4 per mil, suggest two possible terrigenous sources and their mixtures in different proportions: phosphate from igneous/metamorphic rocks and phosphate precipitated in source regions in equilibrium with d18Ow of meteoric water. More importantly, original isotopic compositions of at least one phase of authigenic phosphates and all detrital phosphates are not altered by diagenesis and other biogeochemical changes within the sediment column. These findings help to understand the origin and provenance of P phases and paleoenvironmental conditions at/near the sediment-water interface, and to infer post-depositional activities within the sediment column.
Resumo:
"Final report for the period June 15, 1955 to September 15, 1957 for American Association of Soap and Glycerine Producers."