996 resultados para Infrared wavelengths
Resumo:
The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.
Resumo:
We examine the test-retest reliability of biceps brachii tissue oxygenation index (TOI) parameters measured by near-infrared spectroscopy during a 10-s sustained and a 30-repeated (1-s contraction, 1-s relaxation) isometric contraction task at 30% of maximal voluntary contraction (30% MVC) and maximal (100% MVC) intensities. Eight healthy men (23 to 33 yr) were tested on three sessions separated by 3 h and 24 h, and the within-subject reliability of torque and each TOI parameter were determined by Bland-Altman+/-2 SD limits of agreement plots and coefficient of variation (CV). No significant (P>0.05) differences between the three sessions were found for mean values of torque and TOI parameters during the sustained and repeated tasks at both contraction intensities. All TOI parameters were within+/-2 SD limits of agreement. The CVs for torque integral were similar between the sustained and repeated task at both intensities (4 to 7%); however, the CVs for TOI parameters during the sustained and repeated task were lower for 100% MVC (7 to 11%) than for 30% MVC (22 to 36%). It is concluded that the reliability of the biceps brachii NIRS parameters during both sustained and repeated isometric contraction tasks is acceptable.
Resumo:
This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, ΔTOI) and total haemoglobin concentration (ΔtHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased ∼30% of pre-exercise MVC. During the 30 contractions at 30% MVC, ΔTOI decrease was significantly (P < 0.05) greater and ∼tHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (∼40% of VOL) was significantly (P < 0.05) lower than VOL, ΔTOI was similar and ΔtHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity. © Springer-Verlag 2009.
Resumo:
Infrared and infrared emission spectroscopy were used to analyze the difference in structure and thermal behavior of two Chinese palygorskites. The position of the main bands identified in the infrared spectra of the palygorskites studied is similar for these two Chinese samples, but there are some differences in their intensity, which is significant. This discrepancy is attributed to various geological environments in different regions and the existence of impurities. The infrared emission spectra clearly show the structural changes and dehydroxylation of the palygorskites when the temperature is raised. The dehydration of the palygorskites is followed by the loss of intensity of the OH stretching vibration bands in the region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3700 and 3550 cm-1. Dehydration of pure palygorskite was completed by 600 °C. Partial loss of coordinated water was observed at 400 °C. Infrared emission spectroscopy is an effective method to determine the stability of the mineral.
Resumo:
Thermal-infrared images have superior statistical properties compared with visible-spectrum images in many low-light or no-light scenarios. However, a detailed understanding of feature detector performance in the thermal modality lags behind that of the visible modality. To address this, the first comprehensive study on feature detector performance on thermal-infrared images is conducted. A dataset is presented which explores a total of ten different environments with a range of statistical properties. An investigation is conducted into the effects of several digital and physical image transformations on detector repeatability in these environments. The effect of non-uniformity noise, unique to the thermal modality, is analyzed. The accumulation of sensor non-uniformities beyond the minimum possible level was found to have only a small negative effect. A limiting of feature counts was found to improve the repeatability performance of several detectors. Most other image transformations had predictable effects on feature stability. The best-performing detector varied considerably depending on the nature of the scene and the test.
Resumo:
The use of vibrational spectroscopic techniques to characterise historical artefacts and art works continues to grow and to provide the archaeologist and art historian with significant information with which to understand the nature and activities of previous peoples and civilizations. In addition, conservators can gain knowledge of the composition of artworks or historical objects and so are better equipped to ensure their preservation. Both infrared and Raman have been widely used. Microspectroscopy is the preferred sampling technique as it requires only a very small sample, which often can be recovered. The use of synchrotron radiation in conjunction with IR microspectroscopy is increasing because of the substantial benefits in terms of improved spatial resolution and signal-to-noise ratio. The key trend for the future is the growth in the use of portable instruments, both IR and Raman, which are becoming important because they allow non-destructive measurements to be made in situ, for example at an archaeological site or at a museum.
Resumo:
This paper reviews the current state in the application of infrared methods, particularly mid-infrared (mid-IR) and near infrared (NIR), for the evaluation of the structural and functional integrity of articular cartilage. It is noted that while a considerable amount of research has been conducted with respect to tissue characterization using mid-IR, it is almost certain that full-thickness cartilage assessment is not feasible with this method. On the contrary, the relatively more considerable penetration capacity of NIR suggests that it is a suitable candidate for full-thickness cartilage evaluation. Nevertheless, significant research is still required to improve the specificity and clinical applicability of the method if we are going to be able to use it for distinguishing between functional and dysfunctional cartilage.
Resumo:
Early-stage treatments for osteoarthritis are attracting considerable interest as a means to delay, or avoid altogether, the pain and lack of mobility associated with late-stage disease, and the considerable burden that it places on the community. With the development of these treatments comes a need to assess the tissue to which they are applied, both in trialling of new treatments and as an aid to clinical decision making. Here, we measure a range of mechanical indentation, ultrasound and near-infrared spectroscopy parameters in normal and osteoarthritic bovine joints in vitro to describe the role of different physical phenomena in disease progression, using this as a basis to investigate the potential value of the techniques as clinical tools. Based on 72 samples we found that mechanical and ultrasound parameters showed differences between fibrillated tissue, macroscopically normal tissue in osteoarthritic joints, and normal tissue, yet did were unable to differentiate degradation beyond that which was visible to the naked eye. Near-infrared spectroscopy showed a clear progression of degradation across the visibly normal osteoarthritic joint surface and as such, was the only technique considered useful for clinical application.
Resumo:
Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site.
Resumo:
A ground-based tracking camera and co-aligned slit-less spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth's atmosphere in June 2010. Good quality spectra were obtained that showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the black body nature of the radiation concluded that the peak average temperature of the surface was about (3100±100) K.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.