880 resultados para Information retrieval


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 114.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally presented as the author's thesis, University of Illinois at Urbana-Champaign, 1974.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M. S.)--University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally presented as the author's thesis, University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Originally issued in 1973 as open-file report SW-104of."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Document ranking is an important process in information retrieval (IR). It presents retrieved documents in an order of their estimated degrees of relevance to query. Traditional document ranking methods are mostly based on the similarity computations between documents and query. In this paper we argue that the similarity-based document ranking is insufficient in some cases. There are two reasons. Firstly it is about the increased information variety. There are far too many different types documents available now for user to search. The second is about the users variety. In many cases user may want to retrieve documents that are not only similar but also general or broad regarding a certain topic. This is particularly the case in some domains such as bio-medical IR. In this paper we propose a novel approach to re-rank the retrieved documents by incorporating the similarity with their generality. By an ontology-based analysis on the semantic cohesion of text, document generality can be quantified. The retrieved documents are then re-ranked by their combined scores of similarity and the closeness of documents’ generality to the query’s. Our experiments have shown an encouraging performance on a large bio-medical document collection, OHSUMED, containing 348,566 medical journal references and 101 test queries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses an document discovery tool based on formal concept analysis. The program allows users to navigate email using a visual lattice metaphor rather than a tree. It implements a virtual file structure over email where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in email discovery. The system described provides more flexibility in retrieving stored emails than what is normally available in email clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes the scientific work presented at the 32nd European Conference on Information Retrieval. It demonstrates that information retrieval (IR) as a research area continues to thrive with progress being made in three complementary sub-fields, namely IR theory and formal methods together with indexing and query representation issues, furthermore Web IR as a primary application area and finally research into evaluation methods and metrics. It is the combination of these areas that gives IR its solid scientific foundations. The paper also illustrates that significant progress has been made in other areas of IR. The keynote speakers addressed three such subject fields, social search engines using personalization and recommendation technologies, the renewed interest in applying natural language processing to IR, and multimedia IR as another fast-growing area.