347 resultados para Inbreeding.
Resumo:
In chimpanzees, most females disperse from the community in which they were born to reproduce in a new community, thereby eliminating the risk of inbreeding with close kin. However, across sites, some females breed in their natal community, raising questions about the flexibility of dispersal, the costs and benefits of different strategies and the mitigation of costs associated with dispersal and integration. In this dissertation I address these questions by combining long-term behavioral data and recent field observations on maturing and young adult females in Gombe National Park with an experimental manipulation of relationship formation in captive apes in the Congo.
To assess the risk of inbreeding for females who do and do not disperse, 129 chimpanzees were genotyped and relatedness between each dyad was calculated. Natal females were more closely related to adult community males than were immigrant females. By examining the parentage of 58 surviving offspring, I found that natal females were not more related to the sires of their offspring than were immigrant females, despite three instances of close inbreeding. The sires of all offspring were less related to the mothers than non-sires regardless of the mother’s residence status. These results suggest that chimpanzees are capable of detecting relatedness and that, even when remaining natal, females can largely avoid, though not eliminate, inbreeding.
Next, I examined whether dispersal was associated with energetic, social, physiological and/or reproductive costs by comparing immigrant (n=10) and natal (n=9) females of similar age using 2358 hours of observational data. Natal and immigrant females did not differ in any energetic metric. Immigrant females received aggression from resident females more frequently than natal females. Immigrants spent less time in social grooming and more time self-grooming than natal females. Immigrant females primarily associated with resident males, had more social partners and lacked close social allies. There was no difference in levels of fecal glucocorticoid metabolites in immigrant and natal females. Immigrant females gave birth 2.5 years later than natal females, though the survival of their first offspring did not differ. These results indicate that immigrant females in Gombe National Park do not face energetic deficits upon transfer, but they do enter a hostile social environment and have a delayed first birth.
Next, I examined whether chimpanzees use condition- and phenotype-dependent cues in making dispersal decisions. I examined the effect of social and environmental conditions present at the time females of known age matured (n=25) on the females’ dispersal decisions. Females were more likely to disperse if they had more male maternal relatives and thus, a high risk of inbreeding. Females with a high ranking mother and multiple maternal female kin tended to disperse less frequently, suggesting that a strong female kin network provides benefits to the maturing daughter. Females were also somewhat less likely to disperse when fewer unrelated males were present in the group. Habitat quality and intrasexual competition did not affect dispersal decisions. Using a larger sample of 62 females observed as adults in Gombe, I also detected an effect of phenotypic differences in personality on the female’s dispersal decisions; extraverted, agreeable and open females were less likely to disperse.
Natural observations show that apes use grooming and play as social currency, but no experimental manipulations have been carried out to measure the effects of these behaviors on relationship formation, an essential component of integration. Thirty chimpanzees and 25 bonobos were given a choice between an unfamiliar human who had recently groomed or played with them over one who did not. Both species showed a preference for the human that had interacted with them, though the effect was driven by males. These results support the idea that grooming and play act as social currency in great apes that can rapidly shape social relationships between unfamiliar individuals. Further investigation is needed to elucidate the use of social currency in female apes.
I conclude that dispersal in female chimpanzees is flexible and the balance of costs and benefits varies for each individual. Females likely take into account social cues present at maturity and their own phenotype in choosing a settlement path and are especially sensitive to the presence of maternal male kin. The primary cost associated with philopatry is inbreeding risk and the primary cost associated with dispersal is delay in the age at first birth, presumably resulting from intense social competition. Finally, apes may strategically make use of affiliative behavior in pursuing particular relationships, something that should be useful in the integration process.
Resumo:
Plastid microsatellite loci developed for Cephalanthera longifolia were used to examine the level of genetic variation within and between populations of the three widespread Cephalanthera species (C. damasonium, C. longifolia and C. rubra). The most detailed sampling was in C. longifolia (42 localities from Ireland to China; 147 individuals). Eight haplotypes were detected. One was detected in the vast majority of individuals and occurred from Ireland to Iran. Three others were only found in Europe (Ireland to Italy, England to Italy and Austria to Croatia). Two were only found in the Middle East and two only in Asia. In C. damasonium, 21 individuals from 10 populations (England to Turkey) were sampled. Only one haplotype was detected. In C. rubra, 34 individuals from eight populations (England to Turkey) were sampled. Although it was not possible to amplify all loci for all samples of this species, nine haplotypes were detected. Short alleles for the trnS-trnG region found in two populations of C. rubra were characterized by sequencing and were caused by deletions of 26 and 30 base pairs. At this level of sampling, it appears that C. rubra shows the greatest genetic variability. Cephalanthera longifolia, C. rubra and C. damasonium have previously been characterized as outbreeding, outbreeding with facultative vegetative reproduction and inbreeding, respectively. Patterns of genetic variation here are discussed in the light of these reproductive system differences. The primers used in these three species of Cephalanthera were also demonstrated to amplify these loci in another five species (C. austiniae, C. calcarata, C. epipactoides, C. falcata and C. yunnanensis). Although it is sometimes treated as a synonym of C. damasonium, the single sample of C. yunnanensis from China had a markedly different haplotype from that found in C. damasonium. All three loci were successfully amplified in two achlorophyllous, myco-heterotrophic species, C. austinae and C. calcarata. © 2010 The Linnean Society of London.
Resumo:
Strong ocean current systems characterize the Southern Ocean. The genetic structure of marine phytoplankton species is believed to depend mainly on currents. Genetic estimates of the relatedness of populations of phytoplankton species therefore should provide a proxy showing to what extent different geographic regions are interconnected by the ocean current systems. In this study, spatial and temporal patterns of genetic diversity were studied in the circumpolar prymnesiophyte Phaeocystis antarctica Karsten using seven nuclear microsatellite loci. Analyses were conducted for 86 P. antarctica isolates sampled around the Antarctic continent between 1982 and2007. The resultsrevealed highgenetic diversity without singlegenotypes recurringeven amongisolateswithin a bloom or originating from the same bucket of water. Populations of P. antarctica were significantly differentiated among the oceanic regions. However, some geographically distant populations were more closely related to each other than they were to other geographically close populations. Temporal haplotype turnover within regions was also suggested by the multilocus fingerprints. Our data suggest that even within blooms of P. antarctica genetic diversity and population sizes are large but exchange between different regions canbe limited. Positive and significant inbreeding coefficients hint at further regional substructure of populations, suggestingthat patches, once isolated from one another, may not reconnect. These data emphasize that even for planktonic species in a marine ecosystem that is influenced by strong currents, significant breaks in geneflow may occur.
Resumo:
Lasaea rubra is an inbreeding bivalve species, living at most heights on rocky shores. Freshly collected animals from different shore heights showed significantly different upper median lethal temperatures (MLTs), with upper shore animals having higher MLTs than lower shore specimens. Experiments with animals acclimated for at least one month to a single temperature (15°C) demonstrated that these differences in upper MLT were unaffected by thermal acclimation. Electrophoretic investigation showed that the differences in thermal response had a genetic basis. Homogeneous populations of the high-water inbred line (‘Inbred line A’) had a higher MLT than homogeneous populations of ‘Inbred line C’ which was found on the middle and lower shore. No differences were detected between the MLTs of separate populations of Inbred lines A or C. A third inbred line (‘Inbred line B’) was found on the middle shore, but no homogeneous populations were found. However, indirect evidence suggests that Inbred line B has a thermal response intermediate between those of Inbred lines A and C. Study of populations made up of mixtures of inbred lines confirmed the relationship between upper MLTs and genetic composition of the population.
Resumo:
Glaciation over the Pleistocene induced dramatic range fluctuations for species across North America such that postglacial recolonization by southern refugial lineages has characterized the genetic structure of northern North American species. Based on the leading edge model of postglacial range expansion, dispersal and rapid population growth in these northern taxa is expected to produce vast areas of genetic homogeneity. Previous work on the widely distributed spring peeper (Pseudacris crucifer) revealed six distinct mitochondrial lineages that diverged between 3-11 mya, expanding and contracting with glacial cycles. Beginning 16,000 yBP, receding glaciers permitted Eastern lineage refugia residing in the southern Appalachians to migrate northward into the St. Lawrence Valley then westward through most of central Canada. Peripheral populations at the northwestern range limit of P. crucifer in central Manitoba are likely descended from this westward expanding Eastern lineage. According to the central-marginal hypothesis, founder effects from colonization as well as limited gene flow is expected to reveal genetic differentiation and lower genetic diversity in peripheral populations. The goal of my study is to further our understanding of peripheral range dynamics in peripheral Manitoba populations of P. crucifer by determining their genetic affinity and diversity relative to more central populations in Ontario and Minnesota. In this study I amplified and aligned cytochrome b sequences from sample sites across central Manitoba to reconstruct a Bayesian phylogeny for P. crucifer; additionally, microsatellite loci were genotyped to estimate genetic diversity. Results from this study affirmed Eastern lineage descent for peripheral Manitoba sites by aligning with Ontario. Initial colonization by the Interior lineage between glacial retreat and the appearance of arid vicariance events may explain the apparent introgression of non-Eastern lineages in Manitoba. However, genetic diversity measured in expected heterozygosity (H¬e) was not found to be significantly different in Manitoba genotypes. Greater isolation by distance and inbreeding relative to Ontario and Minnesota is likely the primary driver of genetic variation in these sites. Further sampling is necessary to generate a more complete genetic population structure for P. crucifer.
Resumo:
Existing in suboptimal conditions is a frequent occurrence for species inhabiting the cusp of their ecological range. In range-edge populations of plants, the scarcity of suitable habitat may be reflected in small population sizes which may result in increased self-pollination and/or inbreeding and an increase in the incidence of clonal reproduction. These factors may result in a decrease in levels of genetic diversity and a loss of potential adaptive variation that may compromise species' ability to cope with changes in their environment, an issue that is particularly relevant today with the current concern surrounding global climate change and its effect on species' distributional ranges. In the present study, we have compared the levels of clonal reproduction in the one-sided wintergreen Orthilia secunda (L.) House in (1) populations from its main continuous distribution range, (2) populations occurring on the limits of the continuous range, and (3) peripheral populations outwith the species' continuous distribution range. Range-edge populations in Scotland and Sweden displayed significantly lower genotypic richness and diversity than those from the main area of the species' distribution in these countries. Populations from Ireland, which occur in the temperate zone rather than the boreal conditions that are the preferred habitat for the species, and which represent relict populations left over from cooler periods in the Earth's history, displayed no within-population genetic diversity, suggesting a complete lack of sexual reproduction. Furthermore, the genetic distinctiveness of the Irish populations, which contained alleles not found in either the Scottish or the Swedish populations, highlights the value of 'trailing edge' populations and supports the concept of 'parochial conservation', namely the conservation of species that are locally rare but globally common.
Resumo:
The Neotropical Euglossini (Hymenoptera: Apidae) are important pollinators of many flowering plants, particularly orchids. Lack of highly polymorphic genetic markers for euglossine species has limited the study of their social organization and inbreeding. We therefore developed microsatellite markers for two species, Eulaema nigrita (11 loci) and Euglossa cordata (nine loci), most of which were highly polymorphic in the source species and in a range of related euglossine bees.
Resumo:
Morphometrics and DNA microsatellites were used to analyse the genetic structure of populations of the stingless bee M. beecheii from two extremes of its geographic range. The results showed that populations from Costa Rica and Yucatan exhibit substantial phenotypic and molecular differentiation. Bees from Yucatan were smaller and paler than those from Costa Rica. The value of multilocus F-ST = 0.280 (P <0.001) confirmed that there were significant molecular genetic differences between the two populations. Populations showed significant deviation from Hardy Weinberg equilibrium and the values of FIS (the inbreeding coefficient) were positive for Costa Rica = 0.416 and the Yucatan Peninsula = 0.193, indicating a lack of heterozygotes in both populations possibly due to inbreeding. The DNA sequence of 678 bp of the mitochondrial gene COI differed between populations by 1.2%. The results of this study should be considered in conservation programmes, particularly with regard to the movement of colonies between regions.
Resumo:
Considerable interspecific diversity exists among bees in the rendezvous sites where males search for females and in the behaviours employed by males in their efforts to secure matings. I present an evolutionary framework in which to interpret this variation, and highlight the importance for the framework of (i) the distribution of receptive ( typically immediate post-emergence) females, which ordinarily translates into the distribution of nests, and (ii) the density of competing males. Other than the highly polyandrous honey bees ( Apis), most female bees are thought to be monandrous, though genetic data with which to support this view are generally lacking. Given the opportunity, male bees are typically polygamous. I highlight intraspecific diversity in rendezvous site, male behaviour and mating system, which is in part predicted from the conceptual framework. Finally, I suggest that inbreeding may be far more widespread among bees than has hitherto been considered the case.
Resumo:
Eight new microsatellite loci were characterized for Littorina saxatilis (Olivi, 1792) and tested for their cross-hybridization in congeners. All loci were polymorphic in Irish and Celtic Sea samples, with an average number of alleles per locus of 15 (range, 6–31). Observed and expected locus heterozygosities ranged from 26 to 85% and from 53 to 92%, respectively. Three loci showed excess homozygosity and significant departures from Hardy–Weinberg expectations in one sample, possibly due to null alleles, population structuring or inbreeding. No linkage disequilibrium was detected among loci within samples. A high degree of cross-hybridization was observed in closely related congeners and most loci were polymorphic. These markers will be useful for investigating population genetic diversity and connectivity in coastal populations, especially for marine reserve design.
Resumo:
The effect that breed standards and selective breeding practices have on the welfare of pedigree dogs has recently come under scrutiny from both the general public and scientific community. Recent research has suggested that breeding for particular aesthetic traits, such as tightly curled tails, highly domed skulls and short muzzles predisposes dogs with these traits to certain inherited defects, such as spina bifida, syringomyelia and brachycephalic airway obstruction syndrome, respectively. Further to this, there is a very large number of inherited diseases that are not related to breed standards, which are thought to be prevalent, partly as a consequence of inbreeding and restricted breeding pools. Inherited diseases, whether linked to conformation or not, have varying impact on the individuals affected by them, and affect varying proportions of the pedigree dog population. Some diseases affect few breeds but are highly prevalent in predisposed breeds. Other diseases affect many breeds, but have low prevalence within each breed. In this paper, we discuss the use of risk analysis and severity diagrams as means of mapping the overall problem of inherited disorders in pedigree dogs and, more specifically, the welfare impact of specific diseases in particular breeds.
Resumo:
Orchid or euglossine bees are conspicuous Hymenoptera of the Neotropics, where they pollinate numerous plants, including orchids. Allozyme-based analyses have suggested that their populations suffer from inbreeding, as evidenced by so-called diploid male production. We have developed nine polymorphic microsatellite loci for the widespread Euglossa annectans, with observed heterozygosities ranging from 0.143 to 0.952 and between 2 and 9 alleles per species. These loci will be useful for analysis of relatedness, population genetic structure and diploid male production in this and related species.
Resumo:
I study the institution of avoiding hiring one’s own Ph.D. graduates for assistant professorships. I argue that this institution is necessary to create better incentives for researchers to incorporate new information in studies, facilitating the convergence to asymptotic learning of the studied fundamentals.
Resumo:
Genetic analysis on populations of European ash (Fraxinus excelsior) throughout Ireland was carried out to determine the levels and patterns of genetic diversity in naturally seeded trees in ash woodlands and hedgerows, with the aim of informing conservation and replanting strategies in the face of potential loss of trees as a result of ash dieback. Samples from 33 sites across Northern Ireland and three sites in the Republic of Ireland were genotyped for eight nuclear and ten chloroplast microsatellites. Levels of diversity were high (mean A R = 10.53; mean H O = 0.709; mean H E = 0.765) and were similar to those in Great Britain and continental Europe, whilst levels of population genetic differentiation based on nuclear microsatellites were extremely low (Φ ST = 0.0131). Levels of inbreeding (mean F IS = 0.067) were significantly lower than those reported for populations from Great Britain. Fine-scale analysis of seed dispersal indicated potential for dispersal over hundreds of metres. Our results suggest that ash woodlands across Ireland could be treated as a single management unit, and thus native material from anywhere in Ireland could be used as a source for replanting. In addition, high potential for dispersal has implications for recolonization processes post-ash dieback (Chalara fraxinea) infection, and could aid in our assessment of the capacity of ash to shift its range in response to global climate change.
Resumo:
BACKGROUND: The liver fluke Fasciola hepatica is a major pathogen of livestock worldwide, causing huge economic losses to agriculture, as well as 2.4 million human infections annually.
RESULTS: Here we provide a draft genome for F. hepatica, which we find to be among the largest known pathogen genomes at 1.3 Gb. This size cannot be explained by genome duplication or expansion of a single repeat element, and remains a paradox given the burden it may impose on egg production necessary to transmit infection. Despite the potential for inbreeding by facultative self-fertilisation, substantial levels of polymorphism were found, which highlights the evolutionary potential for rapid adaptation to changes in host availability, climate change or to drug or vaccine interventions. Non-synonymous polymorphisms were elevated in genes shared with parasitic taxa, which may be particularly relevant for the ability of the parasite to adapt to a broad range of definitive mammalian and intermediate molluscan hosts. Large-scale transcriptional changes, particularly within expanded protease and tubulin families, were found as the parasite migrated from the gut, across the peritoneum and through the liver to mature in the bile ducts. We identify novel members of anti-oxidant and detoxification pathways and defined their differential expression through infection, which may explain the stage-specific efficacy of different anthelmintic drugs.
CONCLUSIONS: The genome analysis described here provides new insights into the evolution of this important pathogen, its adaptation to the host environment and external selection pressures. This analysis also provides a platform for research into novel drugs and vaccines.