980 resultados para Imaging Spectrometer Data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depression is the most frequent psychiatric disorder in Parkinson`s disease (PD). Although evidence Suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontall cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study evaluated the interobserver reliability of plain radiograpy versus computed tomography (CT) for the Universal and AO classification systems for distal radius fractures. Patients and methods: Five observers classified 21 sets of distal radius fractures using plain radiographs and CT independently. Kappa statistics were used to establish a relative level of agreement between observers for both readings. Results: Interobserver agreement was rated as moderate for the Universal classification and poor for the AO classification. Reducing the AO system to 9 categories and to its three main types reliability was raised to a ""moderate"" level. No difference was found for interobserver reliability between the Universal classification using plain radiographs and the Universal classification using computed tomography. Interobserver reliability of the AO classification system using plain radiographs was significantly higher than the interobserver reliability of the AO classification system using only computed tomography. Conclusion: From these data, we conclude that classification of distal radius fractures using CT scanning without plain radiographs is not beneficial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carotid artery stenosis due to arteriosclerosis increases the risk of cerebral ischemia via embolic phenomena or reduced blood flow. The changes in cerebral perfusion that may occur after treatment are not clearly understood. This study evaluated the changes in cerebral microcirculation following carotid angioplasty with stenting (CAS) under cerebral protection with filters using ultrafast gradient echo (GRE) perfusion weighted imaging (PWI) with magnetic resonance imaging (MRI). Prospectively, 21 cervical carotid stenosis patients, mean age 69.95 years, underwent MRI 12 h before and 72 h after CAS. PWI parameters were collected for statistical analysis: cerebral blood volume (CB V), mean transit time (MTT) and time to peak (TTP). Statistical analysis was applied to absolute parameters and to values normalized against those from the contralateral parenchyma. The main finding of this study was improved hemodynamics for the normalized data after CAS, shown by reduced MTT (p<0.001) and TTP (p=0.019) in the territory fed by the middle cerebral artery ipsilateral to the CAS. Absolute data showed increased blood volume in the cerebral hemispheres after CAS, which was more accentuated on the stent side (p=0.016) than the contralateral side (p=0.029). Early improvements in cerebral perfusion, mainly seen in the normalized data, were clearly demonstrated in the timing parameters - TTP & MTT - after CAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of our study was to compare signal characteristics and image qualities of MR imaging at 3.0 T and 1.5 T in patients with diffuse parenchymal liver disease. Materials and methods: 25 consecutive patients with diffuse parenchymal liver disease underwent abdominal MR imaging at both 3.0 T and 1.5 T within a 6-month interval. A retrospective study was conducted to obtain quantitative and qualitative data from both 3.0 T and 1.5 T MRI. Quantitative image analysis was performed by measuring the signal-to-noise ratios (SNRs) and the contrast-to-noise ratios (CNRs) by the Students t-test. Qualitative image analysis was assessed by grading each sequence on a 3- and 4-point scale, regarding the presence of artifacts and image quality, respectively. Statistical analysis consisted of the Wilcoxon signed-rank test. Results: the mean SNRs and CNRs of the liver parenchyma and the portal vein were significantly higher at 3.0 T than at 1.5 T on portal and equilibrium phases of volumetric interpolated breath-hold examination (VIBE) images (P < 0.05). The mean SNRs were significantly higher at 3.0 T than at 1.5 T on T1-weighted spoiled gradient echo (SGE) images (P < 0.05). However, there were no significantly differences on T2-weighted short-inversion-time inversion recovery (STIR) images. Overall image qualities of the 1.5 T noncontrast T1- and T2-weighted sequences were significantly better than 3.0 T (P < 0.01). In contrast, overall image quality of the 3.0 T post-gadolinium VIBE sequence was significantly better than 1.5 T (P< 0.01). Conclusions: MR imaging of post-gadolinium VIBE sequence at 3.0 T has quantitative and qualitative advantages of evaluating for diffuse parenchymal liver disease. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kallmann syndrome (KS), characterized by the association of hypogonadotropic hypogonadism and anosmia, may present many other phenotypic abnormalities, including neurologic features as involuntary movements, called mirror movements (MM). MM etiology probably involves a complex mechanism comprising corticospinal tract abnormal development associated with deficient contralateral motor cortex inhibitory system. In this study, in order to address previous hypotheses concerning MM etiology, we identified and quantified white matter (WM) alterations in 21 KS patients, comparing subjects with and without MM and 16 control subjects, using magnetization transfer ratio (MTR) and T2 relaxometry (R2). Magnetization transfer and 12 double-echo images were acquired in a 1.5 T system. MTR and R2 were calculated pixel by pixel to initially create individual maps, and then, group average maps, co-registered with MNI305 stereotaxic coordinate system. After analysis of selected regions of interest, we demonstrated areas with higher 12 relaxation time and lower MTR values in KS patients, with and without MM, differently involving corticospinal tract projection, frontal lobes and corpus callosum. Higher MTR was observed only in pyramidal decussation when compared in both groups of patients with controls. In conclusion, we demonstrated that patients with KS have altered WM areas, presenting in a different manner in patients with and without MM. These data suggest axonal loss or disorganization involving abnormal pyramidal tracts and other associative/connective areas, relating to the presence or absence of MM. We also found a different pattern of alteration in pyramidal decussation, which can represent the primary area of neuronal disarrangement. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analyzer-based X-ray phase-contrast imaging (ABI) setup has been mounted at the Brazilian Synchrotron Light Laboratory (LNLS) for multiple imaging radiography (MIR) purposes. The algorithm employed for treating the MIR data collected at LNLS is described, and its reliability in extracting the distinct types of contrast that can be obtained with MIR is demonstrated by analyzing a test sample (thin polyamide wire). As a practical application, the possibility of studying ophthalmic tissues, corneal sequestra in this case, via MIR is investigated. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a prospective study 105 patients with symptoms of stress incontinence underwent video-urodynamic testing, including resting urethral pressure profilometry and translabial ultrasound. The urethral pressure profile (UPP) included maximum urethral closure pressure (MUCP), functional length (FL) and area under the curve (AUC). Ultrasound parameters included urethral thickness, urethral rotation and bladder neck descent, as well as funneling/opening of the internal urethral meatus on Valsalva maneuver. Levator contraction strength was assessed measuring the cranioventral displacement of the internal meatus. Negative correlations between UPP data and age, parity and previous surgery were observed which were consistent with literature data. There was a positive correlation :between the urethral AP diameter on ultrasound and the MUCP, which agrees with reports showing reduced sphincter thickness or volume in stress-incontinent women. Hypermobility on ultrasound did not correlate with UPP data. However, a lower MUCP correlated with extensive opening of the bladder neck. Finally, there was a trend towards poorer pelvic floor function with lower MUCP measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescent protein microscopy imaging is nowadays one of the most important tools in biomedical research. However, the resulting images present a low signal to noise ratio and a time intensity decay due to the photobleaching effect. This phenomenon is a consequence of the decreasing on the radiation emission efficiency of the tagging protein. This occurs because the fluorophore permanently loses its ability to fluoresce, due to photochemical reactions induced by the incident light. The Poisson multiplicative noise that corrupts these images, in addition with its quality degradation due to photobleaching, make long time biological observation processes very difficult. In this paper a denoising algorithm for Poisson data, where the photobleaching effect is explicitly taken into account, is described. The algorithm is designed in a Bayesian framework where the data fidelity term models the Poisson noise generation process as well as the exponential intensity decay caused by the photobleaching. The prior term is conceived with Gibbs priors and log-Euclidean potential functions, suitable to cope with the positivity constrained nature of the parameters to be estimated. Monte Carlo tests with synthetic data are presented to characterize the performance of the algorithm. One example with real data is included to illustrate its application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of amyloid structures is a neuropathological feature that characterizes several neurodegenerative disorders, such as Alzheimer´s and Parkinson´s disease. Up to now, the definitive diagnosis of these diseases can only be accomplished by immunostaining of post mortem brain tissues with dyes such Thioflavin T and congo red. Aiming at early in vivo diagnosis of Alzheimer´s disease (AD), several amyloid-avid radioprobes have been developed for b-amyloid imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT). The aim of this paper is to present a perspective of the available amyloid imaging agents, special those that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Myocardial Perfusion Imaging (MPI) is a very important tool in the assessment of Coronary Artery Disease ( CAD ) patient s and worldwide data demonstrate an increasingly wider use and clinical acceptance. Nevertheless, it is a complex process and it is quite vulnerable concerning the amount and type of possible artefacts, some of them affecting seriously the overall quality and the clinical utility of the obtained data. One of the most in convenient artefacts , but relatively frequent ( 20% of the cases ) , is relate d with patient motion during image acquisition . Mostly, in those situations, specific data is evaluated and a decisi on is made between A) accept the results as they are , consider ing that t he “noise” so introduced does not affect too seriously the final clinical information, or B) to repeat the acquisition process . Another possib ility could be to use the “ Motion Correcti on Software” provided within the software package included in any actual gamma camera. The aim of this study is to compare the quality of the final images , obtained after the application of motion correction software and after the repetition of image acqui sition. Material and Methods Thirty cases of MPI affected by Motion Artefacts and repeated , were used. A group of three, independent (blinded for the differences of origin) expert Nuclear Medicine Clinicians had been invited to evaluate the 30 sets of thre e images - one set for each patient - being ( A) original image , motion uncorrected , (B) original image, motion corrected, and (C) second acquisition image, without motion . The results so obtained were statistically analysed . Results and Conclusion Results obtained demonstrate that the use of the Motion Correction Software is useful essentiall y if the amplitude of movement is not too important (with this specific quantification found hard to define precisely , due to discrepancies between clinicians and other factors , namely between one to another brand); when that is not the case and the amplitude of movement is too important , the n the percentage of agreement between clinicians is much higher and the repetition of the examination is unanimously considered ind ispensable.