862 resultados para Image capture
Resumo:
Protein aggregation became a widely accepted marker of many polyQ disorders, including Machado-Joseph disease (MJD), and is often used as readout for disease progression and development of therapeutic strategies. The lack of good platforms to rapidly quantify protein aggregates in a wide range of disease animal models prompted us to generate a novel image processing application that automatically identifies and quantifies the aggregates in a standardized and operator-independent manner. We propose here a novel image processing tool to quantify the protein aggregates in a Caenorhabditis elegans (C. elegans) model of MJD. Confocal mi-croscopy images were obtained from animals of different genetic conditions. The image processing application was developed using MeVisLab as a platform to pro-cess, analyse and visualize the images obtained from those animals. All segmenta-tion algorithms were based on intensity pixel levels.The quantification of area or numbers of aggregates per total body area, as well as the number of aggregates per animal were shown to be reliable and reproducible measures of protein aggrega-tion in C. elegans. The results obtained were consistent with the levels of aggrega-tion observed in the images. In conclusion, this novel imaging processing applica-tion allows the non-biased, reliable and high throughput quantification of protein aggregates in a C. elegans model of MJD, which may contribute to a significant improvement on the prognosis of treatment effectiveness for this group of disor-ders
Resumo:
This paper investigates realism in character computer animation, which triggered the development of new techniques and aesthetic in spectacular cinema and contemporary culture. With the advent of motion or performing capture, animation has made possible that virtual characters or digital creatures reach higher levels in emotional acting, taking place in virtual cinematic worlds or even special effects movies. This technology, when placed at the service of imagination and fantasy can provide new dimensions in character motion and communication. In this context, projects like Peter Jackson’s (2001) The Lord of the Rings, James Cameron’s Avatar (2009) and more recently Steven Spielberg’s Tintin (2011) demonstrate that motion technology is constantly evolving, and it represents a credible option to explore new techniques and aesthetic in contemporary animation.
Resumo:
The evolution of computer animation represents one of the most relevant andrevolutionary aspects in the rise of contemporary digital visual culture (Darlew,2000), in particular, phenomena such as cinema “spectacular “ (Ibidem) and videogames. This article analyzes the characteristics of this “culture of simulation” (Turkle, 1995:20) relating the multidisciplinary and spectrum of technical and stylistic choices to the dimension of virtual characters acting. The result of these hybrid mixtures and computerized human motion capture techniques - called virtual cinema, universal capture, motion capture, etc. - cosists mainly on the sophistication of “rotoscoping”, as a new interpretation and appropriation of the captured image. This human motion capture technology, used largely by cinema and digital games, is one of the reasons why the authenticity of the animation is sometimes questioned. It is in the fi eld of 3D computer animation visual that this change is more signifi cant, appearing regularly innovative techniques of image manipulation and “hyper-cinema” (Lamarre, 2006: 31) character’s control with deeper sense of emotions. This shift in the culture that Manovich (2006: 27) calls “photo-GRAPHICS” - and Mulvey (2007) argue that creates a new form of possessive relationship with the viewer, in that it can analyze in detail the image, it can acquire it and modify it - is one of the most important aspects in the rise of Cubbit’s (2007) “cinema of attraction”. This article delves intrinsically into the analyze of virtual character animation — particularly in the fi eld of 3D computer animation and human digital acting.
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
Background: Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour and peripheral airway buds of lung explants during cellular development from microscopic images. Methods: The outer contour was defined using an adaptive and multi-scale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelial was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds were counted as the skeleton branched ends from a skeletonized image of the lung inner epithelial. Results: The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Non-significant differences were found between the automatic and manual results in all culture days. Conclusions: The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lightning characteristics and allowing a reliable comparison between different researchers.
Resumo:
Regulating mechanisms of branchingmorphogenesis of fetal lung rat explants have been an essential tool formolecular research.This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development frommicroscopic images. Methods.Theouter contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to themanualmethod. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.
Resumo:
To date few studies have been undertaken in Portugal dealing with the attitudes, motivations, and profile of tourists who visit World Heritage Sites. Also, few studies have dealt with destination image (e.g., Agapito, Mendes & Valle, 2010; Lopes, 2011). As far as it is known, none have approached the issue of gender differences in the choice of a Portuguese heritage destination. Since cultural tourism destinations need to differentiate themselves from each other, appropriate market segmentation must be based on a deep understanding of the customers’ motivations and preferences. Keeping in mind results from empirical literature (e.g., Silberberg, 1995; Beerli & Martin, 2004; Richards, 2004; Pérez, 2009; Sheng, Shen, & Chen, 2008), gender seems to be a possible approach to market segmentation, whether for Guimarães or for other cultural tourism destinations around the world. Located in the north-western region of Portugal, Guimarães is a city of strong symbolic and cultural significance, and the nomination of its historical centre as a World Heritage Site in 2001 enhanced its tourism potential. This study analyses the possible relation between gender and attitudes and motivations towards a World Heritage Site, such as Guimarães. Additionally, the empirical approach used in the study tries to capture differences in the perceived attributes of the city. Commonalities and distinctions within and between groups of tourists, by focusing on the specific characteristic of gender, were analysed. The study addressed two main questions: first, whether males and females have similar or different preferences in choosing the city as their destination; and, second, whether there are gender differences in the perception of the attributes of Guimarães. A better understanding of the gendered nature of the destination is a valuable cue for shaping products and services according to visitors’ preferences.
Resumo:
In a time of fierce competition between regions, an image serve as a basis to develop a strong sense of community, which fosters trust and cooperation that can be mobilized for regional growth. A positive image and reputation could be used in the promotional activities of the region benefiting all the stakeholders as a whole. Mega cultural events are frequently used to attract tourists and investments to a region, but also to enhance the city’s image. This study adopts a marketing/communication perspective of city’s image, and intends to explain how the image of the city is perceived by their residents. Specifically, we intend to compare the perceptions of residents that effectively participated in the Guimarães European Capital of Culture (ECOC) 2012 (engaged residents), and the residents that only assisted to the event (attendees). Several significant findings are reported and their implications for event managers and public policy administrators presented, along with the limitations of the study.
Resumo:
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.
Resumo:
A city’s image can serve as the basis upon which to develop a strong sense of community. This, in turn, fosters trust and cooperation which may attract tourists and investment, and drive regional economic growth. One strategy to enhance a city’s image is to host cultural mega-events. This study focuses on Guimarães, one of the European Capitals of Culture of 2012, and adopts a marketing communication perspective to explore issues of city image. The objective of the study reported was to understand whether images of Guimarães improved after it hosted the cultural mega-event. To attain this goal, we compare the perceptions of residents who participated in the event (engaged participants) and attendees. Several significant findings are reported and their implications for event managers and public policy administrators are presented, along with the limitations of the study.
The Experience of the Religious through Silent Moving Image and the Silence of Bill Viola's Passions
Resumo:
With the creationof the moving image at the end of the 19th century a new way of representing and expressing the Religious was born. The cinema industry rapidly understood that film has a powerful way to attract new audiences and transformed the explicit religious message into an implicit theological discourse of the fictional film. Today, the concept of "cinema" needs to be rethought and expanded, as well as the notion of "tTranscendental" since the strong reality effect of the film can allow a true religious experience for the spectator.
Resumo:
RESUMO: Neste estudo investigou-se a influência dos meios audiovisuais na tomada de decisão pelos utentes em cirurgias oftalmológicas, especialmente nas cirurgias refractivas. A metodologia escolhida integrou métodos quantitativos e qualitativos, com o objectivo de abranger a máxima amplitude da descrição, explicação e compreensão do objecto a ser investigado. Procura-se evidenciar e analisar sentimentos, motivações e atitudes individuais, como escolhas e tomada de decisão, bem como, perceber a relação entre o processo de comunicação médico / paciente e a tomada de decisão. Foram usados: um questionário, material digital e vídeos com as principais cirurgias refractivas apresentadas aos utentes, com uma amostra de n= 150 participantes do Serviço de Oftalmologia da HOSPOR e SAMS Centro de 01 de Julho 2008 a 28 de Fevereiro de 2009, com a faixa etária de 20 a 80 anos, com diagnóstico escolhido. Os dados recolhidos foram analisados pelo SPSS 18. A fundamentação teórica está baseada no estudo da captação e disfunções no trajecto da imagem, observando-se os componentes da aquisição do conhecimento: sensação, percepção, pensamento, consciência, memória, imaginação, linguagem, informação, bem como bioética, comunicação médica e a tomada de decisão, na qual se valoriza a educação do Utente para decidir. O resultado desta investigação aponta para novos paradigmas nos processos de informação / decisão consciente, indicando a necessidade de se investir na educação e na informação médica humanizada aos utentes para haver maior conhecimento, participação, satisfação e eficácia na terapêutica a ser escolhida. ABSTRACT: This paper analyzes how information and communication technologies, in particular the media of some ophthalmologic surgery, can help better decisions meaning new ways of information and new relationship between doctor and patient. This study investigates how doctors take hold of technological resources and discuss the client`s decision. We used the quantitative and qualitative structured interview of client who are visually impaired, especially myopia / hyperopia / astigmatism, presbyopia and cataract. We used a questionnaire, material and digital videos with the leading refractive surgery presented to the clients, with a sample of n = 150 participants of the Department of Ophthalmology, and SAMS HOSPOR Center from 01 July 2008 to 28 February 2009, with range 20 to 80 years, diagnosed chosen. The data collected were analyzed by SPSS. The theoretical study is based on the capture and routing of image and perception, observing neuro-psycho-social components: sensation, perception, visual perception, consciousness, knowledge, memory, imagination, language, information, bioethics and decision-making, in which values education of user to decide. The result of this research points to new paradigms in information processing / conscious decision, indicating the necessity of investing in education and humane medical information to the Users in order to archive a greater awareness,participation, satisfaction and effectiveness in the treatment to choose.
Resumo:
An optically addressed read-write sensor based on two stacked p-i-n heterojunctions is analyzed. The device is a two terminal image sensing structure. The charge packets are injected optically into the p-i-n writer and confined at the illuminated regions changing locally the electrical field profile across the p-i-n reader. An optical scanner is used for charge readout. The design allows a continuous readout without the need for pixel-level patterning. The role of light pattern and scanner wavelengths on the readout parameters is analyzed. The optical-to-electrical transfer characteristics show high quantum efficiency, broad spectral response, and reciprocity between light and image signal. A numerical simulation supports the imaging process. A black and white image is acquired with a resolution around 20 mum showing the potentiality of these devices for imaging applications.
Resumo:
A two terminal optically addressed image processing device based on two stacked sensing/switching p-i-n a-SiC:H diodes is presented. The charge packets are injected optically into the p-i-n sensing photodiode and confined at the illuminated regions changing locally the electrical field profile across the p-i-n switching diode. A red scanner is used for charge readout. The various design parameters and addressing architecture trade-offs are discussed. The influence on the transfer functions of an a-SiC:H sensing absorber optimized for red transmittance and blue collection or of a floating anode in between is analysed. Results show that the thin a-SiC:H sensing absorber confines the readout to the switching diode and filters the light allowing full colour detection at two appropriated voltages. When the floating anode is used the spectral response broadens, allowing B&W image recognition with improved light-to-dark sensitivity. A physical model supports the image and colour recognition process.
Resumo:
We report in this paper the recent advances we obtained in optimizing a color image sensor based on the laser-scanned-photodiode (LSP) technique. A novel device structure based on a a-SiC:H/a-Si:H pin/pin tandem structure has been tested for a proper color separation process that takes advantage on the different filtering properties due to the different light penetration depth at different wavelengths a-SM and a-SiC:H. While the green and the red images give, in comparison with previous tested structures, a weak response, this structure shows a very good recognition of blue color under reverse bias, leaving a good margin for future device optimization in order to achieve a complete and satisfactory RGB image mapping. Experimental results about the spectral collection efficiency are presented and discussed from the point of view of the color sensor applications. The physics behind the device functioning is explained by recurring to a numerical simulation of the internal electrical configuration of the device.