321 resultados para Ilvgmeda Operon
Resumo:
Pseudomonas aeruginosa, when deprived of oxygen, generates ATP from arginine catabolism by enzymes of the arginine deiminase pathway, encoded by the arcDABC operon. Under conditions of low oxygen tension, the transcriptional activator ANR binds to a site centered 41.5 bp upstream of the arcD transcriptional start. ANR-mediated anaerobic induction was enhanced two- to threefold by extracellular arginine. This arginine effect depended, in trans, on the transcriptional regulator ArgR and, in cis, on an ArgR binding site centered at -73.5 bp in the arcD promoter. Binding of purified ArgR protein to this site was demonstrated by electrophoretic mobility shift assays and DNase I footprinting. This ArgR recognition site contained a sequence, 5'-TGACGC-3', which deviated in only 1 base from the common sequence motif 5'-TGTCGC-3' found in other ArgR binding sites of P. aeruginosa. Furthermore, an alignment of all known ArgR binding sites confirmed that they consist of two directly repeated half-sites. In the absence of ANR, arginine did not induce the arc operon, suggesting that ArgR alone does not activate the arcD promoter. According to a model proposed, ArgR makes physical contact with ANR and thereby facilitates initiation of arc transcription.
Resumo:
The IncP alpha promiscuous plasmid (R18, R68, RK2, RP1 and RP4) comprises 60,099 bp of nucleotide sequence, encoding at least 74 genes. About 40 kb of the genome, designated the IncP core and including all essential replication and transfer functions, can be aligned with equivalent sequences in the IncP beta plasmid R751. The compiled IncP alpha sequence revealed several previously unidentified reading frames that are potential genes. IncP alpha plasmids carry genetic information very efficiently: the coding sequences of the genes are closely packed but rarely overlap, and occupy almost 86% of the genome's nucleotide sequence. All of the 74 genes should be expressed, although there is as yet experimental evidence for expression of only 60 of them. Six examples of tandem-in-frame initiation sites specifying two gene products each are known. Two overlapping gene arrangements occupy different reading frames of the same region. Intergenic regions include most of the 25 promoters; transcripts are usually polycistronic. Translation of most of the open reading frames seems to be initiated independently, each from its own ribosomal binding and initiation site, although, a few cases of coupled translation have been reported. The most frequently used initiation codon is AUG but translation for a few open reading frames begins at GUG or UUG. The most common stop-codon is UGA followed by UAA and then UAG. Regulatory circuits are complex and largely dependent on two components of the central control operon. KorA and KorB are transcriptional repressors controlling at least seven operons. KorA and KorB act synergistically in several cases by recognizing and binding to conserved nucleotide sequences. Twelve KorB binding sites were found around the IncP alpha sequence and these are conserved in R751 (IncP beta) with respect to both sequence and location. Replication of IncP alpha plasmids requires oriV and the plasmid-encoded initiator protein TrfA in combination with the host-encoded replication machinery. Conjugative plasmid transfer depends on two separate regions occupying about half of the genome. The primary segregational stability system designated Par/Mrs consists of a putative site-specific recombinase, a possible partitioning apparatus and a post-segregational lethality mechanism, all encoded in two divergent operons. Proteins related to the products of F sop and P1 par partitioning genes are separately encoded in the central control operon.
Resumo:
The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a DeltaphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.
Resumo:
Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3- and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties.
Resumo:
BACKGROUND: The genome of Protochlamydia amoebophila UWE25, a Parachlamydia-related endosymbiont of free-living amoebae, was recently published, providing the opportunity to search for genomic islands (GIs). RESULTS: On the residual cumulative G+C content curve, a G+C-rich 19-kb region was observed. This sequence is part of a 100-kb chromosome region, containing 100 highly co-oriented ORFs, flanked by two 17-bp direct repeats. Two identical gly-tRNA genes in tandem are present at the proximal end of this genetic element. Several mobility genes encoding transposases and bacteriophage-related proteins are located within this chromosome region. Thus, this region largely fulfills the criteria of GIs. The G+C content analysis shows that several modules compose this GI. Surprisingly, one of them encodes all genes essential for F-like conjugative DNA transfer (traF, traG, traH, traN, traU, traW, and trbC), involved in sex pilus retraction and mating pair stabilization, strongly suggesting that, similarly to the other F-like operons, the parachlamydial tra unit is devoted to DNA transfer. A close relatedness of this tra unit to F-like tra operons involved in conjugative transfer is confirmed by phylogenetic analyses performed on concatenated genes and gene order conservation. These analyses and that of gly-tRNA distribution in 140 GIs suggest a proteobacterial origin of the parachlamydial tra unit. CONCLUSIONS: A GI of the UWE25 chromosome encodes a potentially functional F-like DNA conjugative system. This is the first hint of a putative conjugative system in chlamydiae. Conjugation most probably occurs within free-living amoebae, that may contain hundreds of Parachlamydia bacteria tightly packed in vacuoles. Such a conjugative system might be involved in DNA transfer between internalized bacteria. Since this system is absent from the sequenced genomes of Chlamydiaceae, we hypothesize that it was acquired after the divergence between Parachlamydiaceae and Chlamydiaceae, when the Parachlamydia-related symbiont was an intracellular bacteria. It suggests that this heterologous DNA was acquired from a phylogenetically-distant bacteria sharing an amoebal vacuole. Since Parachlamydiaceae are emerging agents of pneumonia, this GI might be involved in pathogenicity. In future, conjugative systems might be developed as genetic tools for Chlamydiales.
Resumo:
OBJECTIVES: Antibiotic tolerance is a phenomenon allowing bacteria to withstand drug-induced killing. Here, we studied a penicillin-tolerant mutant of Streptococcus gordonii (Tol1), which was shown to be deregulated in the expression of the arginine deiminase operon (arc). arc was not directly responsible for tolerance, but is controlled by the global regulator CcpA. Therefore, we sought whether CcpA might be implicated in tolerance. METHODS: The ccpA gene was characterized and subsequently inactivated by PCR ligation mutagenesis in both the susceptible wild-type (WT) and Tol1. The minimal inhibitory concentration and time-kill curves for the strains were determined and the outcome of penicillin treatment in experimental endocarditis assessed. RESULTS: ccpA sequence and expression were similar between the WT and Tol1 strains. In killing assays, the WT lost 3.5 +/- 0.6 and 5.3 +/- 0.6 log(10) cfu/mL and Tol1 lost 0.4 +/- 0.2 and 1.4 +/- 0.9 log(10) cfu/mL after 24 and 48 h of penicillin exposure, respectively. Deletion of ccpA almost totally restored Tol1 kill susceptibility (loss of 2.5 +/- 0.7 and 4.9 +/- 0.7 log(10) cfu/mL at the same endpoints). In experimental endocarditis, penicillin treatment induced a significant reduction in vegetation bacterial densities between Tol1 (4.1 log(10) cfu/g) and Tol1DeltaccpA (2.4 log(10) cfu/g). Restitution of ccpA re-established the tolerant phenotype both in vitro and in vivo. CONCLUSIONS: CcpA, a global regulator of the carbon catabolite repression system, is implicated in penicillin tolerance both in vitro and in vivo. This links antibiotic survival to bacterial sugar metabolism. However, since ccpA sequence and expression were similar between the WT and Tol1 strains, other factors are probably involved in tolerance.
Resumo:
The anaerobic transcriptional regulator ANR induces the arginine deiminase and denitrification pathways in Pseudomonas aeruginosa during oxygen limitation. The homologous activator FNR of Escherichia coli, when introduced into an anr mutant of P. aeruginosa, could functionally replace ANR for anaerobic growth on nitrate but not for anaerobic induction of arginine deiminase. In an FNR-positive E. coli strain, the ANR-dependent promoter of the arcDABC operon, which encodes the enzymes of the arginine deiminase pathway, was not expressed. To analyse systematically these distinct induction patterns, a lacZ promoter-probe, broad-host-range plasmid containing various -40 regions (the ANR/FNR recognition sequences) and -10 promoter sequences was constructed. These constructs were tested in P. aeruginosa and in E. coli expressing either ANR or FNR. In conjunction with the consensus -10 hexamer of E. coli sigma 70 RNA polymerase (TATAAT), the consensus FNR site (TTGAT ..... ATCAA) was recognized efficiently by ANR and FNR in both hosts. By contrast, when promoters contained the Arc box (TTGAC .... ATCAG), which is found in the arcDABC promoter, or a symmetrical mutant FNR site (CTGAT .... ATCAG), ANR was a more effective activator than was FNR. Conversely, an extended 22 bp, fully symmetrical FNR site allowed better activation with FNR than with ANR. Combination of the arc promoter -10 sequence (CCTAAT) with the Arc box or the consensus FNR site resulted in good ANR-dependent expression in P. aeruginosa but gave practically no expression in E. coli, suggesting that RNA polymerase of P. aeruginosa differs from the E. coli enzyme in -10 recognition specificity. In conclusion, ANR and FNR are able to activate the RNA polymerases of P. aeruginosa and E. coli when the -40 and -10 promoter elements ae identical or close to the E. coli consensus sequences.
Resumo:
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.
Resumo:
BACKGROUND: Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore beta-lactam susceptibility in methicillin-resistant S. aureus (MRSA). Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. RESULTS: In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. CONCLUSION: Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.
Resumo:
The biosynthetic genes pchDCBA and pchEF, which are known to be required for the formation of the siderophore pyochelin and its precursors salicylate and dihydroaeruginoate (Dha), are clustered with the pchR regulatory gene on the chromosome of Pseudomonas aeruginosa. The 4.6-kb region located downstream of the pchEF genes was found to contain three additional, contiguous genes, pchG, pchH, and pchI, probably forming a pchEFGHI operon. The deduced amino acid sequences of PchH and PchI are similar to those of ATP binding cassette transport proteins with an export function. PchG is a homolog of the Yersinia pestis and Y. enterocolitica proteins YbtU and Irp3, which are involved in the biosynthesis of yersiniabactin. A null mutation in pchG abolished pyochelin formation, whereas mutations in pchH and pchI did not affect the amounts of salicylate, Dha, and pyochelin produced. The pyochelin biosynthetic genes were expressed from a vector promoter, uncoupling them from Fur-mediated repression by iron and PchR-dependent induction by pyochelin. In a P. aeruginosa mutant lacking the entire pyochelin biosynthetic gene cluster, the expressed pchDCBA and pchEFG genes were sufficient for salicylate, Dha, and pyochelin production. Pyochelin formation was also obtained in the heterologous host Escherichia coli expressing pchDCBA and pchEFG together with the E. coli entD gene, which provides a phosphopantetheinyl transferase necessary for PchE and PchF activation. The PchG protein was purified and used in combination with PchD and phosphopantetheinylated PchE and PchF in vitro to produce pyochelin from salicylate, L-cysteine, ATP, NADPH, and S-adenosylmethionine. Based on this assay, a reductase function was attributed to PchG. In summary, this study completes the identification of the biosynthetic genes required for pyochelin formation from chorismate in P. aeruginosa.
Resumo:
Por meio de estudos moleculares, este trabalho determinou a distância genética entre 12 genótipos de A. comosus por marcadores RAPD (Random Amplified Polymorphic DNA), utilizando 11 "primers" decâmeros da OPERON Technologies Inc. Dos 12 genótipos , 1 foi proveniente da Jamaica, 2 do Estado do Acre (Quinari e RBR-1), 2 do Estado do Maranhão (Turiaçu e São Domingos), 3 do Estado do Piauí (Cefas, Floriano-1 e Floriano-2), 2 do Estado da Bahia (Monte Alegre-1 e Monte Alegre-2) e 2 de Minas Gerais (Pérola e Smouth Cayenne). Pela análise de "cluster", utilizando o método de UPGMA, foi constatada uma grande divergência entre os genótipos de A. comosus estudados com a separação destes em dois grupos a uma distância genética de 31,1%.
Resumo:
Os marcadores moleculares apresentam várias aplicações no melhoramento de plantas, permitindo uma série de análises genéticas. Este trabalho foi realizado com o objetivo de estabelecer marcadores RAPD para serem utilizados em estudos de mapeamento genético e na seleção de híbridos entre tangerina-'Cravo' (Citrus reticulata Blanco) e laranja-'Pêra' (C. sinensis (L.) Osbeck). Extraiu-se DNA de folhas dos parentais e de seis híbridos F1. As reações de amplificação foram preparadas em 13 uL de solução, constituída por tampão 1x GIBCO BRL; soluções 1,54 mM de MgCl2 e 0,2 mM de cada dNTP; 15 ng de cada 'primer'; 1,5 unidade de 'Taq DNA Polymerase' e 15 ng de DNA genômico. As reações foram realizadas em termocicladores programados para 36 ciclos de 1 min a 92ºC, 1 min a 36ºC, 2 min a 72ºC e 10 min de extensão a 72ºC. Foram testados 'primers' decâmeros arbitrários dos 'kits' A, AB, AT, AV, B, C, D, E, G, H, M, N, P, Q, R e U da Operon, sendo selecionados 113 por apresentarem polimorfismo, com número de marcadores variando de 1 a 6 por 'primer'. Esses 'primers' amplificaram 201 (23,13%) bandas polimórficas, aplicáveis no mapeamento genético e seleção de híbridos. A freqüência de 'primers' com 1; 2; 3; 4; 5 e 6 bandas polimórficas foi de 49,5%, 33,6%, 9,7%, 4,4%, 1,8% e 1,0%, respectivamente.
Resumo:
L'élément génétique intégratif et conjugatif auto-transférable de 103 kb qui se trouve dans le génome de Pseudomonas knackmussii B13 (ICEc/c) confère la capacité de dégrader le 3-chlorobenzoate et le 2-aminophénol. L'élément ICE c/c peut être transféré par conjugaison de la souche B13 à diverses bêta- et gamma- protéobactéries. Seule une sous-population de 3 à 5% des cellules transfère l'élément, les cellules dites "compétentes pour le transfert". L'acquisition de la compétence pour le transfert est vraisemblablement la conséquence d'une régulation bistable, conduisant une partie des cellules au transfert de l'élément ICE c/c tandis que, dans les autres, l'élément reste quiescent et ne se transfère pas. À ce jour, les mécanismes et les acteurs moléculaires qui régulent l'activation bistable de l'élément sont restés inconnus. Mon travail de doctorat visait à identifier les éléments bistables du régulon de la compétence pour le transfert et d'analyser les fondements moléculaires de la bistabilité de l'élément ICE c/c chez P. knackmussii. Le premier chapitre introduit le thème du transfert génétique horizontal avec un accent particulier sur les éléments intégratifs et conjugatifs (ICE) et ICEcIc. L'état actuel des connaissances sur l'organisation génétique, la régulation, l'intégration et le transfert de différents modèles de ICEs est exposé en détail. En outre, je m'étends sur les phénomènes d'hétérogénéité et de bistabilité phénotyplques, qu'on peut distinguer dans une population isogénique dans des conditions de culture homogènes, et qui sont susceptibles de jouer un rôle dans le transfert de l'élément ICE c/c, dans la mesure où il ne s'active et n'est transférable que dans une très petite sous-population de cellules. Dans le chapitre 2, je présente une analyse globale des régions promotrices minimales des gènes appartenant au régulon de la compétence pour le transfert de l'élément ICE c/c. Nous avons étudié les caractéristiques d'expression des promoteurs et, s'ils s'avéraient bistables, leur activation dans le temps par comparaison avec le mutant lntB13. Pour ce faire, nous avons utilisé des fusions de promoteurs avec des gènes rapporteurs et testé l'expression bistable chez P. knackmussii par microscopie à épifluorescence. Pour six promoteurs présentant une expression bistable, nous avons employé de la microscopie temporelle pour déterminer la chronologie de leur expression par rapport à Pint et PinR. Parmi eux, nous avons identifié deux gènes exprimés précocement et trois gènes exprimés tardivement dans le processus d'acquisition de la compétence de transfert. Dans le chapitre 3, j'expose une analyse d'expression génétique pour l'un des groupes de gènes dont la transcription est la plus élevée dans la région conservée de ICE c/c, les gènes orf81655-orf68241 contenus dans une région de 14 kb. Nous montrons d'abord que cet opéron fait partie du même régulon bistable que intB13 et inrR et analysons les caractéristiques génétiques qui conduisent à une transcription élevée. Nous étudions les fonctions biologiques de ce groupe de gènes par des délétlons ciblées et montrons que certaines d'entre elles empêchent le transfert de l'élément. Nous approfondissons la caractérlsatlon de I'orf8l655 en construisant une fusion transcrlptionnelle avec le gène codant pour la protéine fluorescente verte (egfp) (en utilisant le système minl-Tn5). L'expression de Vorf81655 dans des cellules individuelles est comparée au signal mesuré par hybridation in situ en fluorescence (FISH) sur le ARN messager du gène. En utilisant FISH, des délétlons du promoteur et de l'analyse directe de transcription, nous avons localisé la région promotrice du groupe de gènes. En outre, nous avons utilisé des mutations dirigées pour comprendre la bistabilité de cette région promotrice, caractérisée par une transcription très élevée et une traduction lente de l'ARN messager. Dans le chapitre 4, nous nous efforçons de comprendre comment la bistabilité est générée au sein du régulon te de l'élément ICE c/c. Pour ce faire, nous avons tenté de reconstituer une expression bistable, dans un hôte qui ne présente pas de bistabilité naturellement, à partir d'éléments génétiques individuels. L'hôte choisi est Pseudomonas putida dans lequel nous avons introduit une copie unique de Pint, PinR ou PaipA fusionnés à la egfp, construits qui permettent d'observer l'apparition de bistabilité. Nous avons ensuite construit différents assemblages de composants génétiques de l'élément ICE c/c, en nous concentrant sur la région parA-inrR. En effet, nous avons pu démontrer qu'une expression bistable apparaît dans P. putida grâce à ces éléments en l'absence de l'élément ICE c/c complet. À noter que la plupart des construits génétiques activent PaipA ou P|,,R, mais qu'un seul recrée la bistabilité de Pint, ce qui suggère que la région parA-inrR permet à la fois d'engendrer la bistabilité et d'opérer la transition entre les promoteurs précoces et les promoteurs tardifs du régulon de la bistabilité. Dans le chapitre 5, nous concluons sur une discussion de la pertinence de nos résultats et sur de futures perspectives de recherche. -- The 103-kb self-transmissible integrative and conjugative element (ICE) of Pseudomonas knackmussii B13 (ICEc/c) confers the capacity to degrade 3- chlorobenzoate and 2-aminophenol. ICEc/c can be conjugated from strain B13 to a variety of Beta- and Gammaproteobacteria. Interestingly, ICE c/c transfer is observed in a subpopulatlon of cells (3-5%) only, the so-called 'transfer competent' cells. The formation of transfer competence (tc) is thought to be the consequence of a 'bistable' decision, which forces those cells to follow the developmental path which leads to ICEc/c transfer, whereas in others ICE c/c remains silent and does not transfer. So far, the mechanisms and molecular partners generating this bistable transfer activation in cells of P. knackmussii B13 remain mostly unidentified. This thesis aimed at understanding the extent of the tc bistability regulon and to dissect the molecular basis of bistabillty formation of ICEc/c in P. knackmussii. The first chapter is a general Introduction on horizontal gene transfer (HGT) with particular emphasis on ICEs and ICE c/c. The emphasis is made on the current knowledge about the HGT gene organization, regulation and specific integration and transfer aspects of the different ICEs models. Furthermore, I focus on the phenomena of phenotypic heterogeneity and bistability (the property of two distinguishable phenotypes existing within an isogenic population under homogeneous conditions), which may play a particular role in ICEc/c behaviour, since ICE activation and transfer only occurs in a very small subpopulation of cells. In Chapter Two, I focus on a global analysis of the different core promoters that might belong to the ICEc/c tc pathway regulon. We studied both expression patterns of ICEc/c promoters and, once being identified as "bistable", their temporal activation compared to that of intB13. In order to do this, we used promoter reporter fusions and tested blstability expression in P. knackmussii using epifluorescence microscopy. For the 6 promoters that showed bistable expression, we used time-lapse microscopy to study the timing of promoter expression in comparison to that of P,,,t or PlnR. We could establish two "early" and 3 "late" phase promoters in the process of transfer competence. In Chapter Three, I focused my attention on analysis of gene expression of one of the most highly transcribed gene clusters in the conserved core region of ICEc/c, a 14-kb gene cluster formed by the genes orf81655-orf68241. First we showed that this operon is part of the same bistability 'regulon' as intB13 and inrR, and analysed the genetic features that lead to high transcription. We studied the potential biological function of this cluster for ICE c/c by making specific gene deletions, showing that some interrupt ICEc/c transfer. We further analysed the orfdl655 promoter by constructing transcriptional egfp fusion reporter strains using the miniTn5 delivery system. Expression of the orf81655 promoter in single cells was compared to signals measured by Fluorescence In Situ Hybridization (FISH) on orfSl655 mRNA. We localized the promoter region of the gene cluster using FISH, promoter deletions, and by direct transcript analysis. We further used site-directed mutagenesis to understand the bistability character of the promoter region and the extremely high transcription but low translation from this mRNA. In Chapter Four, we set out to understand how bistability is generated in the tc pathway of ICEc/c. For this we tried rebuilding bistable expression from ICEc/c individual gene components in a host, which normally does not display bistability. As host we used P. putida without ICEc/c but with a single copy Pint-, PlnR- or PalpA- egfp fusion that enabled us to verify bistability formation. Subsequently, we built different assemblages of ICEc/c gene components, focusing on the parA-inrR region. Indeed, we found that bistable expression can be build from those components in P. putida without ICEc/c. Interestingly, most genetic constructs activated PaipA or PlnR, but only one resulted in bistable activation of PinT. This suggests that the parA-inrR region acts as a bistability "generator", but also as a bistability "relay" from early to late promoters in the tc pathway hierarchy. In the final fifth chapter, we conclude with a discussion of the relevance of the present thesis and the resulting perspectives for future studies.
Resumo:
Chlamydia psittaci and Chlamydia abortus are closely related intracellular bacteria exhibiting different tissue tropism that may cause severe but distinct infection in humans. C. psittaci causes psittacosis, a respiratory zoonotic infection transmitted by birds. C. abortus is an abortigenic agent in small ruminants, which can also colonize the human placenta and lead to foetal death and miscarriage. Infections caused by C. psittaci and C. abortus are underestimated mainly due to diagnosis difficulties resulting from their strict intracellular growth. We developed a duplex real-time PCR to detect and distinguish these two bacteria in clinical samples. The first PCR (PCR1) targeted a sequence of the 16S-23S rRNA operon allowing the detection of both C. psittaci and C. abortus. The second PCR (PCR2) targeted the coding DNA sequence CPSIT_0607 unique to C. psittaci. The two PCRs showed 100 % detection for ≥ 10 DNA copies per reaction (1000 copies ml- 1). Using a set of 120 samples, including bacterial reference strains, clinical specimens and infected cell culture material, we monitored 100 % sensitivity and 100 % specificity for the detection of C. psittaci and C. abortus for PCR1. When PCR1 was positive, PCR2 could discriminate C. psittaci from C. abortus with a positive predictive value of 100 % and a negative predictive value of 88 %. In conclusion, this new duplex PCR represents a low-cost and time-saving method with high-throughput potential, expected to improve the routine diagnosis of psittacosis and pregnancy complication in large-scale screening programs and also during outbreaks.
Resumo:
Criblamydia sequanensis is an amoeba-resisting bacterium recently isolated from the Seine River. This Chlamydia-related bacterium harbors a genome of approximately 3 Mbp and a megaplasmid of 89,525 bp. The plasmid encodes several efflux systems and an operon for arsenite resistance. This first genome sequence within the Criblamydiaceae family enlarges our view on the evolution and the ecology of this important bacterial clade largely understudied so far.