988 resultados para Identification parameters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes a method how to perform measurements on boilers and stoves and how to identify parameters from the measurements for the boiler/stove-model TRNSYS Type 210. The model can be used for detailed annual system simulations using TRNSYS. Experience from measurements on three different pellet stoves and four boilers were used to develop this methodology. Recommendations for the set up of measurements are given and the re-quired combustion theory for the data evaluation and data preparation are given. The data evalua-tion showed that the uncertainties are quite large for the measured flue gas flow rate and for boilers and stoves with high fraction of energy going to the water jacket also the calculated heat rate to the room may have large uncertainties. A methodology for the parameter identification process and identified parameters for two different stoves and three boilers are given. Finally the identified models are compared with measured data showing that the model generally agreed well with meas-ured data during both stationary and dynamic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation operators model various operations on fuzzy sets, such as conjunction, disjunction and aver aging. The choice of aggregation operators suitable for a particular problem is frequently done by fitting the parameters of the operator to the observed data. This paper examines fitting general aggregation operators by using a new method of Lipschitz approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power control design is a critical aspect of CDMA cellular systems design. This paper develops an adaptive power controller design method for CDMA systems. The key to the power control design is on the recursive identification of the underlying wireless stochastic channel model parameters. The identification process guarantees the power controller to work well for systems in unknown or time varying network environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The criteria for accepting or rejecting a technology extend beyond the intrinsic properties of the finished product such as physical performance. There are also extrinsic factors such as the history of the product and trust in the manufacturers and suppliers, as well as the perceptions and risk management strategies of various stakeholder groups. A methodology was trialled to take into account the extended supply chain of the product, while simultaneously engaging stakeholders to determine and to understand their perceptual frameworks. Three pine decking products manufactured using different amounts and types of chemical modification were compared using life cycle assessment and the comments of 114 respondents from six stakeholder groups in New Zealand. The results of the perceptual research include a quadrant diagram which allows a visual comparison of the responses of different stakeholders to actual or hypothetical products, aiding the identification of when and why certain technologies may be disqualified from acceptability or become the topic of public debate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overlapping network techniques to expand the single sequential finish-to-start relationship between preceding and succeeding activities in scheduling construction projects have been developed for decades. The hidden logic relationships between activities and two virtual activities, Start and Finish, however limit the applications of these techniques in practice as they may lead to incorrect time parameters of some activities. In this research, a novel approach has been developed to identify those concealed relationships in a structured procedure by a two-dimensional nested diagram. An empirical study was carried out to demonstrate the network modification approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most real systems have nonlinear behavior and thus model linearization may not produce an accurate representation of them. This paper presents a method based on hybrid functions to identify the parameters of nonlinear real systems. A hybrid function is a combination of two groups of orthogonal functions: piecewise orthogonal functions (e.g. Block-Pulse) and continuous orthogonal functions (e.g. Legendre polynomials). These functions are completed with an operational matrix of integration and a product matrix. Therefore, it is possible to convert nonlinear differential and integration equations into algebraic equations. After mathematical manipulation, the unknown linear and nonlinear parameters are identified. As an example, a mechanical system with single degree of freedom is simulated using the proposed method and the results are compared against those of an existing approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slab–girder structures composed of steel girder and reinforced concrete slab are widely used in buildings and bridges in the world. Their advantages are largely based on the composite action through the shear connection between slab and girder. In order to assess the integrity of this kind of structures, numerous vibration-based damage identification methods have been proposed. In this study, a scaled composite slab–girder model was constructed in the laboratory. Some removable shear connectors were specially designed and fabricated to connect the girder and slab that were cast separately. Then, a two-stage experiment including both static and vibration tests was performed. In the first stage, vibration tests were conducted under different damage scenarios, where a certain number of shear connectors at certain locations were removed step by step. In the second stage, two sets of hydraulic loading equipment were used to apply four-point static loads in the test. The loads are increased gradually until concrete slab cracked. The loading histories as well as deflections at different points of the beam are recorded. Vibration test was carried out before and after concrete cracking. Experimental results show that the changes of mode shapes and relative displacement between slab and girder may be two promising parameters for damage identification of slab–girder structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structures inevitably deteriorate during their service lives. Therefore, the methods capable of identifying and assessing various damages in a structure timely and accurately have drawn increasing attention. From a broader perspective, structural damage identification problem can be regarded as a pattern recognition problem by using sparse representation techniques. The unknown signal/feature from a damaged structure can be associated to a known type of signal/feature in a “dictionary”, leading to damage identification. From this new angle, an innovative damage identification scheme has been proposed by the authors. In this paper, two important techniques of this scheme are further discussed, namely the construction of dictionary and the choice of parameters. The numerical simulated soil-pipe system is used for verifying the performance of the proposed method. The results demonstrate that this damage identification scheme will be a promising tool for structural health monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical time series methods have proven to be a promising technique in structural health monitoring, since it provides a direct form of data analysis and eliminates the requirement for domain transformation. Latest research in structural health monitoring presents a number of statistical models that have been successfully used to construct quantified models of vibration response signals. Although a majority of these studies present viable results, the aspects of practical implementation, statistical model construction and decision-making procedures are often vaguely defined or omitted from presented work. In this article, a comprehensive methodology is developed, which essentially utilizes an auto-regressive moving average with exogenous input model to create quantified model estimates of experimentally acquired response signals. An iterative self-fitting algorithm is proposed to construct and fit the auto-regressive moving average with exogenous input model, which is capable of integrally finding an optimum set of auto-regressive moving average with exogenous input model parameters. After creating a dataset of quantified response signals, an unlabelled response signal can be identified according to a 'closest-fit' available in the dataset. A unique averaging method is proposed and implemented for multi-sensor data fusion to decrease the margin of error with sensors, thus increasing the reliability of global damage identification. To demonstrate the effectiveness of the developed methodology, a steel frame structure subjected to various bolt-connection damage scenarios is tested. Damage identification results from the experimental study suggest that the proposed methodology can be employed as an efficient and functional damage identification tool. © The Author(s) 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Civil infrastructures are critical to every nation, due to their substantial investment, long service period, and enormous negative impacts after failure. However, they inevitably deteriorate during their service lives. Therefore, methods capable of assessing conditions and identifying damage in a structure timely and accurately have drawn increasing attention. Recently, compressive sensing (CS), a significant breakthrough in signal processing, has been proposed to capture and represent compressible signals at a rate significantly below the traditional Nyquist rate. Due to its sound theoretical background and notable influence, this methodology has been successfully applied in many research areas. In order to explore its application in structural damage identification, a new CS-based damage identification scheme is proposed in this paper, by regarding damage identification problems as pattern classification problems. The time domain structural responses are transferred to the frequency domain as sparse representation, and then the numerical simulated data under various damage scenarios will be used to train a feature matrix as input information. This matrix can be used for damage identification through an optimization process. This will be one of the first few applications of this advanced technique to structural engineering areas. In order to demonstrate its effectiveness, numerical simulation results on a complex pipe soil interaction model are used to train the parameters and then to identify the simulated pipe degradation damage and free-spanning damage. To further demonstrate the method, vibration tests of a steel pipe laid on the ground are carried out. The measured acceleration time histories are used for damage identification. Both numerical and experimental verification results confirm that the proposed damage identification scheme will be a promising tool for structural health monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When estimating policy parameters, also known as treatment effects, the assignment to treatment mechanism almost always causes endogeneity and thus bias many of these policy parameters estimates. Additionally, heterogeneity in program impacts is more likely to be the norm than the exception for most social programs. In situations where these issues are present, the Marginal Treatment Effect (MTE) parameter estimation makes use of an instrument to avoid assignment bias and simultaneously to account for heterogeneous effects throughout individuals. Although this parameter is point identified in the literature, the assumptions required for identification may be strong. Given that, we use weaker assumptions in order to partially identify the MTE, i.e. to stablish a methodology for MTE bounds estimation, implementing it computationally and showing results from Monte Carlo simulations. The partial identification we perfom requires the MTE to be a monotone function over the propensity score, which is a reasonable assumption on several economics' examples, and the simulation results shows it is possible to get informative even in restricted cases where point identification is lost. Additionally, in situations where estimated bounds are not informative and the traditional point identification is lost, we suggest a more generic method to point estimate MTE using the Moore-Penrose Pseudo-Invese Matrix, achieving better results than traditional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.