167 resultados para Icebergs
Resumo:
Gypsum grains were identified in Miocene-Pleistocene sediment cores from two deep-water ODP sites, Site 918 off the SE Greenland margin and Site 887 in the Gulf of Alaska, and in Holocene sediment cores from shallow-water localities in Disenchantment Bay and Muir Inlet in southern Alaska. Although initial morphologic and textural observations suggested a complex system in which the gypsum may have had more than one origin, quantitative sulfur isotope analyses of the gypsum provide evidence of its detrital nature. d34S values in gypsum from southern Alaska range between +0.0 and +7.1 per mil. Gypsum has d34S values between -27.1 and -27.5 per mil in the Gulf of Alaska and values between -28.5 and +0.2 per mil off the SE Greenland margin. All of these isotopic signatures are too highly depleted in d34S to have precipitated from seawater, present or past. In addition there is no significant change in d34S values for gypsum crystals with differing physical characteristics (abraded vs. unabraded) from the same stratigraphic horizon, suggesting all the gypsum is detrital regardless of the degree of abrasion. The isotopic and physical evidence, in combination with the onshore geology the environmental setting, and site characteristics of the gypsum-bearing marine localities, lead us to propose that the ultimate source of the gypsum is precipitation from freeze-induced terrestrial sediment or soil brines. Furthermore the combined evidence suggests that the subsequent occurrence of gypsum in glacimarine sediments results from ice-rafting (by icebergs or sea ice) of the frozen regolith and/or, in the proximal glacimarine setting of southern Alaska, very rapid burial via turbidity currents.
Resumo:
We have carried out a multiphase analysis of samples from ODP Site 177-1092, Meteor Rise, subantarctic South Atlantic. Samples were analyzed for ice-rafted debris (IRD [see Table T1]) and stable isotopes from benthic foraminifera [see Murphy et al., 2002, doi:10.1016/S0031-0182(01)00495-3]. Both analyses were performed on the same samples. Additional work was performed to identify the paleomagnetic stratigraphy. The analyzed samples range in age from about 2.6(?) Ma to 4.6 Ma, a time span that saw considerable global warmth, but witnessed overall global refrigeration and the transition to truly bipolar glaciations. IRD arrived frequently during the Early and early Late Pliocene, but only as 'background rafting' (occasional grains per sample). The first identifiable IRD above background rafting is associated with marine isotope stage (MIS) KM4 (~3.18 Ma). Successive IRD peaks become larger, the same pattern as noted at nearby Site 114-704. A very large peak near the top of the record, approximately 2.8 Ma, is considered to represent a hiatus. Peaks below 51.3 meters composite depth (mcd) coincide with positive excursions of the oxygen isotopic record, and with negative excursions of the carbon isotopic curve, a pattern also noted at Site 114-704. However, the reasonably large IRD peak at 51 mcd (tentatively identified with MIS G11) coincides with a positive excursion on the carbon isotopic curve and negative excursion on the oxygen isotopic curve. This relationship suggests a northern hemisphere interglacial, rising sea level, destabilization of the Antarctic margin, and delivery of Antarctic icebergs to the Southern Ocean. Such a mechanism has recently been suggested by Kanfoush et al. (2000, doi:10.1126/science.288.5472.1815) for latest Pleistocene stadial/interstadial oscillations. Here we suggest that such a mechanism may have been in place on glacial/interglacial time scales as early as the Late Pliocene.
Resumo:
Psephitic particles in the region of the Iceland-Faeroe-Ridge have been transported and deposited by means of a complex interplay of glacier movements and drifting icebergs. The composition of the particle association is controlled by the sedimentation of basaltic rock particles derived from the ridge itself and, in addition to that and in southern parts of the ridge, from the Faeroe Islands, the Faeroe-Bank and the Bill Baileys-Bank. Besides, there are crystalline and sedimentary dropstones showing a very varied petrography and a wide range of particle sizes. Their percentage becomes greater as the distance from the ridge increases. The association of dropstones is relatively homogeneous in the region of the ridge and only at greater distances from the ridge it becomes more differentiated. Owing to their composition and distribution, as well as on the basis of characteristic fossils and rock types, the drop-stones are derived from Scandianvia and Great Britain. During periods of maximum glaciation, the Icland-Faeroe-Ridge, th eFaeroe-Bank and the Bill Baileys-Bank were under ice.
Resumo:
During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a <50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated > 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.
Resumo:
Planktic d18O and d13C records and point count records of biogenic, volcanic, and nonvolcanic terrigenous [ice-rafted debris (IRD)] sediment components from Hole 919A in the Irminger basin, northern North Atlantic provide a comprehensive dataset from which a paleoceanographic reconstruction for the last 630 kyr has been developed. The paleoceanographic evolution of the Irminger basin during this time contains both long-term patterns and significant developmental steps. One long-term pattern observed is the persistent deposition of hematite-stained ice-rafted debris. This record suggests that the modern and late Pleistocene discharges of icebergs from northern redbed regions to the Irminger Sea lie in the low end of the range observed over the last 630 kyr. In addition, Arctic front fluctuations appear to have been the main controlling factor on the long-term accumulation patterns of IRD and planktic biogenic groups. The Hole 919A sediment record also contains a long-term association between felsic volcanic ash abundances and light d18O excursions in both interglacial and glacial stages, which suggests a causal link between deglaciations and explosive Icelandic eruptions. A significant developmental step in the paleoceanographic reconstruction based on benthic evidence was for diminished supply of Denmark Strait Overflow Water (DSOW) beginning at ~380 ka, possibly initiated by the influx of meltwater from broad-scale iceberg discharges along the east Greenland coast. There is also planktic evidence of a two-step cooling of sea surface conditions in the Irminger basin, first at ~338-309 ka and later at ~211-190 ka, after which both glacials and interglacials were colder as the Arctic front migrated southeast of Site 919. In addition to offering these findings, this reconstruction provides a longer-term geologic context for the interpretation of more recent paleoceanographic events and patterns of deposition from this region.
Resumo:
A stable isotope record from the eastern Weddell Sea from 69°S is presented. For the first time, a 250,000-yr record from the Southern Ocean can be correlated in detail to the global isotope stratigraphy. Together with magnetostratigraphic, sedimentological and micropalaeontological data, the stratigraphic control of this record can be extended back to 910,000 yrs B.P. A time scale is constructed by linear interpolation between confirmed stratigraphic data points. The benthic d18O record (Epistominella exigua) reflects global continental ice volume changes during the Brunhes and late Matuyama chrons, whereas the planktonic isotopic record (Neogloboquadrina pachyderma) may be influenced by a meltwater lid caused by the nearby Antarctic ice shelf and icebergs. The worldwide climatic improvement during deglaciations is documented in the eastern Weddell Sea by an increase in production of siliceous plankton followed, with a time lag of approximately 10,000 yrs, by planktonic foraminifera production. Peak values in the difference between planktonic and benthic d13C records, which are 0.5 per mil higher during warm climatic periods than during times with expanded continental ice sheets, also suggest increased surface productivity during interglacials in the Southern Ocean.
Resumo:
Changes in the intermediate water structure of the North Atlantic were reconstructed using benthic foraminiferal delta13C at Ocean Drilling Program (ODP) site 982 for the past 1.0 Myr. During most terminations of the late Pleistocene, melting of icebergs and low-salinity surface waters caused production of Glacial North Atlantic Intermediate Water to cease, resulting in decreased ventilation of the middepth North Atlantic. Poor ventilation of intermediate water masses lasted well into some interglacial stages until upper North Atlantic Deep Water (NADW) production resumed under full interglacial conditions. The magnitude of benthic delta13C minima and ice-rafted debris maxima at terminations at site 982 generally match the degree of glacial suppression of NADW inferred from site 607. These processes may be related and controlled by the spatial and seasonal extent of sea ice cover during glaciations in the Nordic Seas.
Resumo:
In the nineties, cold-water coral mounds were discovered in the Porcupine Seabight (NE Atlantic, west of Ireland). A decade later, this discovery led to the drilling of the entire Challenger cold-water coral mound (Eastern slope, Porcupine Seabight) during IODP Expedition 307. As more than 50% of the sediment within Challenger Mound consists of terrigenous material, the terrigenous component is equally important for the build-up of the mound as the framework-building corals. Moreover, the terrigenous fraction contains important information on the dynamics and the conditions of the depositional environment during mound development. In this study, the first in-depth investigation of the terrigenous sediment fraction of a cold-water coral mound is performed, combining clay mineralogy, sedimentology, petrography and Sr-Nd-isotopic analysis on a gravity core (MD01-2451G) collected at the top of Challenger Mound. Sr- and Nd-isotopic fingerprinting identifies Ireland as the main contributor of terrigenous material in Challenger Mound. Besides this, a variable input of volcanic material from the northern volcanic provinces (Iceland and/or the NW British Isles) is recognized in most of the samples. This volcanic material was most likely transported to Challenger Mound during cold climatic stages. In three samples, the isotopic ratios indicate a minor contribution of sediment deriving from the old cratons on Greenland, Scandinavia or Canada. The grain-size distributions of glacial sediments demonstrate that ice-rafted debris was deposited with little or no sorting, indicating a slow bottom-current regime. In contrast, interglacial intervals contain strongly current-sorted sediments, including reworked glacio-marine grains. The micro textures of the quartz-sand grains confirm the presence of grains transported by icebergs in interglacial intervals. These observations highlight the role of ice-rafting as an important transport mechanism of terrigenous material towards the mound during the Late Quaternary. Furthermore, elevated smectite content in the siliciclastic, glaciomarine sediment intervals is linked to the deglaciation history of the British-Irish Ice Sheet (BIIS). The increase of smectite is attributed to the initial stage of chemical weathering processes, which became activated following glacial retreat and the onset of warmer climatic conditions. During these deglaciations a significant change in the signature of the detrital fraction and a lack of coral growth is observed. Therefore, we postulate that the deglaciation of the BIIS has an important effect on mound growth. It can seriously alter the hydrography, nutrient supply and sedimentation processes, thereby affecting both sediment input and coral growth and hence, coral mound development.