979 resultados para ISOLATED RAT HEPATOCYTES
Resumo:
Activated hepatic stellate cells have been implicated in the fibrogenic process associated with iron overload, both in animal models and in human hemochromatosis. Previous studies have evaluated the role of ferritin/ferritin receptor interactions in the activation of stellate cells and subsequent fibrogenesis; however, the role of transferrin in hepatic stellate cell biology is unknown. This study was designed to identify and characterize the stellate cell transferrin receptor and to evaluate the influence of transferrin on stellate cell activation. Identification and characterization of the stellate cell transferrin receptor was determined by competitive displacement assays. The effect of transferrin on stellate cell activation was assessed using western blot analysis for alpha-smooth muscle actin expression, [H-3]Thymidine incorporation, and real-time RT-PCR for procollagen 1(I) mRNA expression. A specific receptor for rat transferrin was observed on activated but not quiescent stellate cells. Transferrin significantly increased the expression of alpha-smooth muscle actin, but caused a decrease in proliferation. Transferrin induced a significant increase in procollagen alpha1(I) mRNA expression. In conclusion, this study has demonstrated for the first time a specific, high affinity receptor for rat transferrin on activated hepatic stellate cells, which via interaction with transferrin regulates stellate cell activation. This suggests that transferrin may be an important factor in the activation of hepatic stellate cells in conditions of iron overload.
Resumo:
Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.
Resumo:
Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.
Resumo:
Tubulointerstitial inflammation is a common feature of renal diseases. We have investigated the relationship between inflammation and Na(+) transport in the collecting duct (CD) using the mCCD(cl1) and mpkCDD(cl4) principal cell models. Lipopolysaccharide (LPS) decreased basal and aldosterone-stimulated amiloride-sensitive transepithelial current in a time-dependent manner. This effect was associated with a decrease in serum and glucocorticoid-regulated kinase 1 (SGK1) mRNA and protein levels followed by a decrease in epithelial sodium channel (ENaC) alpha-subunit mRNA levels. The LPS-induced decrease in SGK1 expression was confirmed in isolated rat CD. This decreased expression of either SGK1 or the ENaC alpha-subunit was not due to enhanced degradation of mRNA. In contrast, LPS inhibited transcriptional activity of the SGK1 promoter measured by luciferase-reporter gene assay. The effect of LPS was not mediated by inhibition of mineralocorticoid or glucocorticoid receptor, because expression of both receptors was unchanged and blockade of either receptor by spironolactone or RU486, respectively, did not prevent the down-regulation of SGK1. The effect of LPS was mediated by the canonical NF-kappaB pathway, as overexpression of a constitutively active mutant, IKKbeta (inhibitor of nuclear factor kappaB kinase-beta) decreased SGK1 mRNA levels, and knockdown of p65 NF-kappaB subunit by small interfering RNA increased SGK1 mRNA levels. Chromatin immunoprecipitation showed that LPS increased p65 binding to two NF-kappaB sites along the SGK1 promoter. In conclusion, we show that activation of the NF-kappaB pathway down-regulates SGK1 expression, which might lead to decreased ENaC alpha-subunit expression, ultimately resulting in decreased Na(+) transport.
Resumo:
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.
Resumo:
In insulin-secreting cells, cytokines activate the c-Jun N-terminal kinase (JNK), which contributes to a cell signaling towards apoptosis. The JNK activation requires the presence of the murine scaffold protein JNK-interacting protein 1 (JIP-1) or human Islet-brain 1(IB1), which organizes MLK3, MKK7 and JNK for proper signaling specificity. Here, we used adenovirus-mediated gene transfer to modulate IB1/JIP-1 cellular content in order to investigate the contribution of IB1/JIP-1 to beta-cell survival. Exposure of the insulin-producing cell line INS-1 or isolated rat pancreatic islets to cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-1beta) induced a marked reduction of IB1/JIP-1 content and a concomitant increase in JNK activity and apoptosis rate. This JNK-induced pro-apoptotic program was prevented in INS-1 cells by overproducing IB1/JIP-1 and this effect was associated with inhibition of caspase-3 cleavage. Conversely, reducing IB1/JIP-1 content in INS-1 cells and isolated pancreatic islets induced a robust increase in basal and cytokine-stimulated apoptosis. In heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene, the reduction in IB1/JIP-1 content in happloinsufficient isolated pancreatic islets was associated with an increased JNK activity and basal apoptosis. These data demonstrate that modulation of the IB1-JIP-1 content in beta cells is a crucial regulator of JNK signaling pathway and of cytokine-induced apoptosis.
Resumo:
The function of interleukin-3 (or multi-CSF) in the hemopoietic system has been studied in great detail. Although its growth promoting activity on brain microglial cells has been confirmed both in vitro and in vivo, its presence in the brain and even in cultured brain cells has repeatedly been questioned. We have shown recently that isolated rat microglia express mRNA(IL-3) and synthesize IL-3 polypeptide. It is shown here by use of the PCR method, that mRNA(IL-3) is found also in C6 glioblastoma, in rat aggregate cultures, and in newborn and adult rat brain. Quantitation of amplified cDNA(IL-3) was achieved by non-competitive RT-PCR using an elongated internal standard. IL-3 messenger RNA was almost undetectable in vivo and low in (serum-free) aggregate cultures. In isolated microglia, mRNA(IL-3) was increased upon treatment with LPS, PHA, with the cytokines IL-1 or TNF-alpha, with retinoic acid, dbcAMP or the phorbol ester TPA. Effects of LPS were inhibited by dexamethasone, while the glucocorticoid by itself had no effect on basal IL-3 expression. LPS increased mRNA(IL-3) in a concentration-dependent manner beginning with 10 pg/ml and reaching plateau levels at 10 ng/ml. LPS also increased mRNAs of TNF-alpha and TNF-beta. TNF-alpha mRNA was already detectable in untreated microglia and LPS-increased levels were sustained for a few days. In contrast, TNF-beta mRNA was observed only between 4 and 16 h of LPS incubation. It was absent in LPS-free microglia, and after 24 h of LPS-treatment or later.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.
Resumo:
Macrophage migration-inhibitory factor (MIF) has recently been identified as a pituitary hormone that functions as a counterregulatory modulator of glucocorticoid action within the immune system. In the anterior pituitary gland, MIF is expressed in TSH- and ACTH-producing cells, and its secretion is induced by CRF. To investigate MIF function and regulation within pituitary cells, we initiated the characterization of the MIF 5'-regulatory region of the gene. The -1033 to +63 bp of the murine MIF promoter was cloned 5' to a luciferase reporter gene and transiently transfected into freshly isolated rat anterior pituitary cells. This construct drove high basal transcriptional activity that was further enhanced after stimulation with CRF or with an activator of adenylate cyclase. These transcriptional effects were associated with a concomitant rise in ACTH secretion in the transfected cells and by an increase in MIF gene expression as assessed by Northern blot analysis. A cAMP-responsive element (CRE) was identified within the MIF promoter region which, once mutated, abolished the cAMP responsiveness of the gene. Using this newly identified CRE, DNA-binding activity was detected by gel retardation assay in nuclear extracts prepared from isolated anterior pituitary cells and AtT-20 corticotrope tumor cells. Supershift experiments using antibodies against the CRE-binding protein CREB, together with competition assays and the use of recombinant CREB, allowed the detection of CREB-binding activity with the identified MIF CRE. These data demonstrate that CREB is the mediator of the CRF-induced MIF gene transcription in pituitary cells through an identified CRE in the proximal region of the MIF promoter.
Resumo:
The long-chain acyl-coenzyme A synthetase (ACS) gene gives rise to three transcripts containing different first exons preceded by specific regulatory regions A, B, and C. Exon-specific oligonucleotide hybridization indicated that only A-ACS mRNA is expressed in rat liver. Fibrate administration induced liver C-ACS strongly and A-ACS mRNA to a lesser extent. B-ACS mRNA remained undetectable. In primary rat hepatocytes and Fa-32 hepatoma cells C-ACS mRNA increased after treatment with fenofibric acid, alpha-bromopalmitate, tetradecylthioacetic acid, or alpha-linolenic acid. Nuclear run-on experiments indicated that fenofibric acid and alpha-bromopalmitate act at the transcriptional level. Transient transfections showed a 3.4-, 2.3-, and 2.2-fold induction of C-ACS promoter activity after fenofibric acid, alpha-bromopalmitate, and tetradecylthioacetic acid, respectively. Unilateral deletion and site-directed mutagenesis identified a peroxisome proliferator activator receptor (PPAR)-responsive element (PPRE) mediating the responsiveness to fibrates and fatty acids. This ACS PPRE contains three imperfect half sites spaced by 1 and 3 oligonucleotides and binds PPAR.retinoid X receptor heterodimers in gel retardation assays. In conclusion, the regulation of C-ACS mRNA expression by fibrates and fatty acids is mediated by PPAR.retinoid X receptor heterodimers interacting through a PPRE in the C-ACS promoters. PPAR therefore occupies a key position in the transcriptional control of a pivotal enzyme controlling the channeling of fatty acids into various metabolic pathways.
Resumo:
Indirect evidence suggests that activity of pyruvate dehydrogenase (PDH) influences recovery of the myocardium after transient ischemia. The present study examined the relationship between postischemic injury and activity of PDH and the role of mitochondrial calcium uptake for observed changes in PDH activity. Isovolumically beating isolated rat hearts perfused with erythrocyte-enriched buffer containing glucose, palmitate, and insulin were submitted to either 20 or 35 min of no-flow ischemia. After 20 min of no-flow ischemia, hearts exhibited complete recovery of developed left ventricular pressure (DLVP). The proportion of myocardial PDH in the active state was modestly increased to 38% (compared with 13% in control hearts) without a change in glucose oxidation. In contrast, in hearts subjected to 35 min of no-flow ischemia (which exhibited poor recovery of DLVP), there was marked stimulation of glucose oxidation (+460%; P < 0.01) and pronounced increase in the active fraction of PDH to 72% (P < 0.01). Glycolytic flux was not significantly altered. Ruthenium red (6 microM) completely abolished the activation of PDH and the increase in glucose oxidation. The results indicate that variable stimulation of glucose oxidation during reperfusion is related to different degrees of activation of PDH, which depends on the severity of the ischemic injury. Activation of PDH seems to be mediated by myocardial calcium uptake.
Resumo:
Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.
Resumo:
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.
Resumo:
Hydrogen peroxide (H2O2) perfused into the aorta of the isolated rat heart induces a positive inotropic effect, with cardiac arrhythmia such as extrasystolic potentiation or cardiac contractures, depending on the dose. The last effect is similar to the "stone heart" observed in reperfusion injury and may be ascribed to lipoperoxidation (LPO) of the membrane lipids, to protein damage, to reduction of the ATP level, to enzymatic alterations and to cardioactive compounds liberated by LPO. These effects may result in calcium overload of the cardiac fibers and contracture ("stone heart"). Hearts from male Wistar rats (300-350 g) were perfused at 31oC with Tyrode, 0.2 mM trolox C, 256 mM H2O2 or trolox C + H2O2. Cardiac contractures (baseline elevation of the myograms obtained) were observed when hearts were perfused with H2O2 (Tyrode: 5.9 ± 3.2; H2O2: 60.5 ± 13.9% of the initial value); perfusion with H2O2 increased the LPO of rat heart homogenates measured by chemiluminescence (Tyrode: 3,199 ± 259; H2O2: 5,304 ± 133 cps mg protein-1 60 min-1), oxygen uptake (Tyrode: 0.44 ± 0.1; H2O2: 3.2 ± 0.8 nmol min-1 mg protein-1) and malonaldehyde (TBARS) formation (Tyrode: 0.12 ± 0; H2O2: 0.37 ± 0.1 nmol/ml). Previous perfusion with 0.2 mM trolox C reduced the LPO (chemiluminescence: 4,098 ± 531), oxygen uptake (0.51 ± 0) and TBARS (0.13 ± 0) but did not prevent the H2O2-induced contractures (33.3 ± 16%). ATP (Tyrode: 2.84 ± 0; H2O2: 0.57 ± 0) and glycogen levels (Tyrode: 0.46 ± 0; H2O2: 0.26 ± 0) were reduced by H2O2. Trolox did not prevent these effects (ATP: 0.84 ± 0 and glycogen: 0.27 ± 0). Trolox C is known to be more effective than a -tocopherol or g -tocopherol in reducing LPO though it lacks the phytol portion of vitamin E to be fixed to the cell membranes. Trolox C, unlike vitamin A, did not prevent the glycogen reduction induced by H2O2. Trolox C induced a positive chronotropic effect that resulted in higher energy consumption. The reduction of energy level seemed to be more important than LPO in the mechanism of H2O2-induced contracture
Resumo:
The influence of afterload on the rate of force generation by the myocardium was investigated using two types of preparations: the in situ dog heart (dP/dt) and isolated papillary muscle of rats (dT/dt). Thirteen anesthetized, mechanically ventilated and thoracotomized dogs were submitted to pharmacological autonomic blockade (3.0 mg/kg oxprenolol plus 0.5 mg/kg atropine). A reservoir connected to the left atrium permitted the control of left ventricular end-diastolic pressure (LVEDP). A mechanical constriction of the descending thoracic aorta allowed to increase the systolic pressure in two steps of 20 mmHg (conditions H1 and H2) above control values (condition C). After arterial pressure elevations (systolic pressure C: 119 ± 8.1; H1: 142 ± 7.9; H2 166 ± 7.7 mmHg; P<0.01), there were no significant differences in heart rate (C: 125 ± 13.9; H1: 125 ± 13.5; H2: 123 ± 14.1 bpm; P>0.05) or LVEDP (C: 6.2 ± 2.48; H1: 6.3 ± 2.43; H2: 6.1 ± 2.51 mmHg; P>0.05). The values of dP/dt did not change after each elevation of arterial pressure (C: 3,068 ± 1,057; H1: 3,112 ± 996; H2: 3,086 ± 980 mmHg/s; P>0.05). In isolated rat papillary muscle, an afterload corresponding to 50% and 75% of the maximal developed tension did not alter the values of the maximum rate of tension development (100%: 78 ± 13; 75%: 80 ± 13; 50%: 79 ± 11 g mm-2 s-1, P>0.05). The results show that the rise in afterload per se does not cause changes in dP/dt or dT/dt