989 resultados para ISOLATED PORTAL-VEIN
Resumo:
We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
QUESTOR, DuPont , ICI and EC Framework 4 collaboration (Groningen, Cardiff, Dresden) – Belfast PI Larkin.
Resumo:
The perforated-patch technique was used to measure membrane currents in smooth muscle cells from sheep urethra. Depolarizing pulses evoked large transient outward currents and several components of sustained current. The transient current and a component of sustained current were blocked by iberiotoxin, penitrem A, and nifedipine but were unaffected by apamin or 4-aminopyridine, suggesting that they were mediated by large-conductance Ca(2+)-activated K(+) (BK) channels. When the BK current was blocked by exposure to penitrem A (100 nM) and Ca(2+)-free bath solution, there remained a voltage-sensitive K(+) current that was moderately sensitive to blockade with tetraethylammonium (TEA; half-maximal effective dose = 3.0 +/- 0.8 mM) but not 4-aminopyridine. Penitrem A (100 nM) increased the spike amplitude and plateau potential in slow waves evoked in single cells, whereas addition of TEA (10 mM) further increased the plateau potential and duration. In conclusion, both Ca(2+)-activated and voltage-dependent K(+) currents were found in urethral myocytes. Both of these currents are capable of contributing to the slow wave in these cells, suggesting that they are likely to influence urethral tone under certain conditions.
Resumo:
1. Freshly isolated sheep lymphatic smooth muscle cells were studied using the perforated patch-clamp technique. Hyperpolarisation with constant-current pulses caused a time-dependent rectification evident as a depolarising 'sag' followed by an anode-break overshoot at the end of the pulse. Both sag and overshoot were blocked with 1 mM Cs+. 2. Cells were voltage clamped at -30 mV and stepped to -120 mV in 10 mV steps of 2 s duration. Steps negative to -60 mV evoked a slowly activating, non-inactivating inward current which increased in size and rate of activation with increasing hyperpolarisation. 3. The slowly activating current was reduced in Na+-free bathing solution but enhanced when the extracellular K+ concentration was increased to 60 mM. The current was significantly reduced by 1 mM Cs+ and 1 microM ZD7288 but not by 1.8 mM Ba2+. 4. The steady-state activation curve of the underlying conductance showed a threshold at -50 mV and half-maximal activation at -81 mV. Neither threshold nor half-maximal activation was significantly affected by increasing the external K+ concentration to 60 mM. 5. The frequency of spontaneous contractions and fluid propulsion in isolated cannulated segments of sheep mesenteric lymphatics were decreased by 1 mM Cs+ and by 1 microM ZD7288. 6. We conclude that sheep lymphatics have a hyperpolarisation-activated inward current similar to the If seen in sinoatrial node cells of the heart. Blockade of this current slows spontaneous pumping in intact lymphatic vessels suggesting that it is important in normal pacemaking.
Resumo:
1. Isolated sheep urethral cells were studied using the perforated patch clamp technique (T = 37 degrees C). Depolarizing steps ranging from -40 to -10 mV evoked an inward current that peaked within 10 ms and a slower inward current. Stepping back to the holding potential of -80 mV evoked large inward tail currents. All three currents were abolished by nifedipine (1 microM). Substitution of external Ca2+ with Ba2+ resulted in potentiation of the fast inward current and blockade of the slow current and tails. 2. Changing the chloride equilibrium potential (ECl) from 0 to +27 mV shifted the reversal potential of the tail currents from 1 +/- 1 to 27 +/- 1 mV (number of cells, n = 5). Chloride channel blockers, niflumic acid (10 microM) and anthracene-9-carboxylic acid (9AC, 1 mM), reduced the slow current and tails suggesting that these were Ca(2+)-activated Cl- currents, ICl(Ca). 4. Caffeine (10 mM) induced currents that reversed at ECl and were blocked by niflumic acid (10 microM). 5. In current clamp mode, some cells developed spontaneous transient depolarizations (STDs) and action potentials. Short exposure to nifedipine blocked the action potentials and unmasked STDs. In contrast, 9AC and niflumic acid reduced the amplitude of the STDs and blocked the action potentials. 6. In conclusion, these cells have both L-type ICa and ICl(Ca). The former appears to be responsible for the upstroke of the action potential, while the latter may act as a pacemaker current.
Resumo:
1. The patch-clamp technique was used to measure membrane currents in isolated smooth muscle cells dispersed from sheep mesenteric lymphatics. Depolarizing steps positive to -30 mV evoked rapid inward currents followed by noisy outward currents. 2. Nifedipine (1 microM) markedly reduced the outward current, while Bay K 8644 (1 microM) enhanced it. Up to 90% of the outward current was also blocked by iberiotoxin (Kd = 36 nM). 3. Large conductance (304 +/- 15 pS, 7 cells), Ca(2+)- and voltage-sensitive channels were observed during single-channel recordings on inside-out patches using symmetrical 140 mM K+ solutions (at 37 degrees C). The voltage required for half-maximal activation of the channels (V1/2) shifted in the hyperpolarizing direction by 146 mV per 10-fold increase in [Ca2+]i. 4. In whole-cell experiments a voltage-dependent outward current remained when the Ca(2+)-activated current was blocked with penitrem A (100 nM). This current activated at potentials positive to -20 mV and demonstrated the phenomenon of voltage-dependent inactivation (V1/2 = -41 +/- 2 mV, slope factor = 18 +/- 2 mV, 5 cells). 6. Tetraethylammonium (TEA; 30 mM) reduced the voltage-dependent current by 75% (Kd = 3.3 mM, 5 cells) while a maximal concentration of 4-aminopyridine (4-AP; 10 mM) blocked only 40% of the current. TEA alone had as much effect as TEA and 4-AP together, suggesting that there are at least two components to the voltage-sensitive K+ current. 7. These results suggest that lymphatic smooth muscle cells generate a Ca(2+)-activated current, largely mediated by large conductance Ca(2+)-activated K+ channels, and several components of voltage-dependent outward current which resemble 'delayed rectifier' currents in other smooth muscle preparations.
Resumo:
Freshly dispersed cells from sheep urinary bladder were voltage clamped using the whole cell and inside-out patch-clamp technique. Cibacron and Basilen blue increased outward current in a dose-dependent manner with a half-maximal response at 10(-5) M. Suramin, in concentrations to 10(-3) M, had no such effect. The Cibacron blue response was abolished in Ca2+-free physiological salt solution, suggesting that it was acting on a Ca2+-dependent current. Similarly, the Cibacron blue-sensitive current was significantly attenuated by charybdotoxin. Cibacron blue did not modulate inward current nor were its effects modified by caffeine or heparin, suggesting that its effect on outward current was not secondary to an increase in intracellular Ca2+. Application of 10(-4) M Cibacron blue to the inside membrane of excised patches caused a rapid increase in open probability of a large-conductance (300 pS) K+ channel. These results suggest that Cibacron blue is a potent activator of a Ca2+-dependent outward current in bladder smooth muscle cells in addition to its action as a purinergic blocker.