980 resultados para ISM : cosmic rays


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present the capability of a new network of field mill sensors to monitor the atmospheric electric field at various locations in South America; we also show some early results. The main objective of the new network is to obtain the characteristic Universal Time diurnal curve of the atmospheric electric field in fair weather, known as the Carnegie curve. The Carnegie curve is closely related to the current sources flowing in the Global Atmospheric Electric Circuit so that another goal is the study of this relationship on various time scales (transient/monthly/seasonal/annual). Also, by operating this new network, we may also study departures of the Carnegie curve from its long term average value related to various solar, geophysical and atmospheric phenomena such as the solar cycle, solar flares and energetic charged particles, galactic cosmic rays, seismic activity and specific meteorological events. We then expect to have a better understanding of the influence of these phenomena on the Global Atmospheric Electric Circuit and its time-varying behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Space is a dangerous place for humans, once we step beyond the rotection of Earth’s atmosphere and magnetic field. Galactic cosmic rays and bursts of charged particles from the Sun damaging to health happen with alarming frequency – the Apollo astronauts were very lucky. Understanding the physics of radiation from distinct sources in space will be useful to help future space voyagers plan journeys in greater safety, and produce effective shields for these unavoidable events on journeys to Mars or beyond.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth’s atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent paleoclimate studies provide strong evidence for an association between cosmogenic isotope production and Earth’s climate throughout the holecene. These isotopes are generated by the bombardment of Earth’s atmosphere by galactic cosmic rays, the fluxes of which vary in approximately inverse proportion to the total open magnetic flux of the Sun. This paper discusses how results from the Ulysses spacecraft allow us to quantify the open solar flux from observations of near-Earth interplanetary space and to study its long-term variations using the homogeneous record of geomagnetic activity. A study of the results and of their accuracy is presented. The two proposed mechanisms that could lead to the open solar flux being a good proxy for solar-induced climate change are discussed: the first is the modulation of the production of some types of cloud by the air ions produced by cosmic rays; the second is a variation in the total or spectral solar irradiance, in association with changes in the open flux. Some implications for our understanding of anthropogenic climate change are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The correlation between the coronal source flux F_{S} and the total solar irradiance I_{TS} is re-evaluated in the light of an additional 5 years' data from the rising phase of solar cycle 23 and also by using cosmic ray fluxes detected at Earth. Tests on monthly averages show that the correlation with F_{S} deduced from the interplanetary magnetic field (correlation coefficient, r = 0.62) is highly significant (99.999%), but that there is insufficient data for the higher correlation with annual means (r = 0.80) to be considered significant. Anti-correlations between I_{TS} and cosmic ray fluxes are found in monthly data for all stations and geomagnetic rigidity cut-offs (r ranging from −0.63 to −0.74) and these have significance levels between 85% and 98%. In all cases, the t is poorest for the earliest data (i.e., prior to 1982). Excluding these data improves the anticorrelation with cosmic rays to r = −0:93 for one-year running means. Both the interplanetary magnetic field data and the cosmic ray fluxes indicate that the total solar irradiance lags behind the open solar flux with a delay that is estimated to have an optimum value of 2.8 months (and is within the uncertainty range 0.8-8.0 months at the 90% level).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies of the variation of geomagnetic activity over the past 140 years have quantified the "coronal source" magnetic flux F-s that leaves the solar atmosphere and enters the heliosphere and have shown that it has risen, on average, by an estimated 34% since 1963 and by 140% since 1900. This variation of open solar flux has been reproduced by Solanki et al. [2000] using a model which demonstrates how the open flux accumulates and decays, depending on the rate of flux emergence in active regions and on the length of the solar cycle. We here use a new technique to evaluate solar cycle length and find that it does vary in association with the rate of change of F-s in the way predicted. The long-term variation of the rate of flux emergence is found to be very similar in form to that in F-s, which may offer a potential explanation of why F-s appears to be a useful proxy for extrapolating solar total irradiance back in time. We also find that most of the variation of cosmic ray fluxes incident on Earth is explained by the strength of the heliospheric field (quantified by F-s) and use observations of the abundance of the isotope Be-10 (produced by cosmic rays and deposited in ice sheets) to study the decrease in F-s during the Maunder minimum. The interior motions at the base of the convection zone, where the solar dynamo is probably located, have recently been revealed using the helioseismology technique and found to exhibit a 1.3-year oscillation. This periodicity is here reported in observations of the interplanetary magnetic field and geomagnetic activity but is only present after 1940, When present, it shows a strong 22-year variation, peaking near the maximum of even-numbered sunspot cycles and showing minima at the peaks of odd-numbered cycles. We discuss the implications of these long-term solar and heliospheric variations for Earth's environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the causes of the century-long increase in geomagnetic activity, quantified by annual means of the aa index, using observations of interplanetary space, galactic cosmic rays, the ionosphere, and the auroral electrojet, made during the last three solar cycles. The effects of changes in ionospheric conductivity, the Earth's dipole tilt, and magnetic moment are shown to be small; only changes in near-Earth interplanetary space make a significant contribution to the long-term increase in activity. We study the effects of the interplanetary medium by applying dimensional analysis to generate the optimum solar wind-magnetosphere energy coupling function, having an unprecedentedly high correlation coefficient of 0.97. Analysis of the terms of the coupling function shows that the largest contributions to the drift in activity over solar cycles 20-22 originate from rises in the average interplanetary magnetic field (IMF) strength, solar wind concentration, and speed; average IMF orientation has grown somewhat less propitious for causing geomagnetic activity. The combination of these factors explains almost all of the 39% rise in aa observed over the last three solar cycles. Whereas the IMF strength varies approximately in phase with sunspot numbers, neither its orientation nor the solar wind density shows any coherent solar cycle variation. The solar wind speed peaks strongly in the declining phase of even-numbered cycles and can be identified as the chief cause of the phase shift between the sunspot numbers and the aa index. The rise in the IMF magnitude, the largest single contributor to the drift in geomagnetic activity, is shown to be caused by a rise in the solar coronal magnetic field, consistent with a rise in the coronal source field, modeled from photospheric observations, and an observed decay in cosmic ray fluxes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Hale cycle, one complete magnetic cycle of the Sun, spans two complete Schwabe cycles (also referred to as sunspot and, more generally, solar cycles). The approximately 22-year Hale cycle is seen in magnetic polarities of both sunspots and polar fields, as well as in the intensity of galactic cosmic rays reaching Earth, with odd- and even-numbered solar cycles displaying qualitatively different waveforms. Correct numbering of solar cycles also underpins empirical cycle-to-cycle relations which are used as first-order tests of stellar dynamo models. There has been much debate about whether the unusually long solar cycle 4 (SC4), spanning- 1784–1799, was actually two shorter solar cycles combined as a result of poor data coverage in the original Wolf sunspot number record. Indeed, the group sunspot number does show a small increase around 1794–1799 and there is evidence of an increase in the mean latitude of sunspots at this time, suggesting the existence of a cycle ‘‘4b’’. In this study, we use cosmogenic radionuclide data and associated reconstructions of the heliospheric magnetic field (HMF) to show that the Hale cycle has persisted over the last 300 years and that data prior to 1800 are more consistent with cycle 4 being a single long cycle (the ‘‘no SC4b’’ scenario). We also investigate the effect of cycle 4b on the HMF using an open solar flux (OSF) continuity model, in which the OSF source term is related to sunspot number and the OSF loss term is determined by the heliospheric current sheet tilt, assumed to be a simple function of solar cycle phase. The results are surprising; Without SC4b, the HMF shows two distinct peaks in the 1784–1799 interval, while the addition of SC4b removes the secondary peak, as the OSF loss term acts in opposition to the later rise in sunspot number. The timing and magnitude of the main SC4 HMF peak is also significantly changed by the addition of SC4b. These results are compared with the cosmogenic isotope reconstructions of HMF and historical aurora records. These data marginally favour the existence of SC4b (the ‘‘SC4b’’ scenario), though the result is less certain than that based on the persistence of the Hale cycle. Thus while the current uncertainties in the observations preclude any definitive conclusions, the data favour the ‘‘no SC4b’’ scenario. Future improvements to cosmogenic isotope reconstructions of the HMF, through either improved modelling or additional ice cores from well-separated geographic locations, may enable questions of the existence of SC4b and the phase of Hale cycle prior to the Maunder minimum to be settled conclusively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian and Vishniac (1999) model of fast reconnection. We trace particles within our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration. We discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The highest energy cosmic ray event reported by the Auger Observatory has an energy of 148 EeV. It does not correlate with any nearby (z<0.024) object capable of originating such a high energy event. Intrigued by the fact that the highest energy event ever recorded (by the Fly`s Eye collaboration) points to a faraway quasar with very high radio luminosity and large Faraday rotation measurement, we have searched for a similar source for the Auger event. We find that the Auger highest energy event points to a quasar with similar characteristics to the one correlated to the Fly`s Eye event. We also find the same kind of correlation for one of the highest energy AGASA events. We conclude that so far these types of quasars are the best source candidates for both Auger and Fly`s Eye highest energy events. We discuss a few exotic candidates that could reach us from gigaparsec distances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ""radio-hybrid"" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.