975 resultados para INTERMEDIATE ENERGIES
Resumo:
We propose a scheme for the compression of tree structured intermediate code consisting of a sequence of trees specified by a regular tree grammar. The scheme is based on arithmetic coding, and the model that works in conjunction with the coder is automatically generated from the syntactical specification of the tree language. Experiments on data sets consisting of intermediate code trees yield compression ratios ranging from 2.5 to 8, for file sizes ranging from 167 bytes to 1 megabyte.
Resumo:
The standard free energies of formation of zinc aluminate and chromite were determined by measuring the oxygen potential over a solid CuZn alloy, containing 10 at.−% Zn, in equilibrium with ZnO, ZnAl2O4+Al2O3(χ) and ZnCr2O4+Cr2O3, in the temperature range 700–900°C. The oxygen potential was monitored by means of a solid oxide galvanic cell in which a Y2O3 ThO2 pellet was sandwiched between a CaOZrO2 crucible and tube. The temperature dependence of the free energies of formation of the interoxidic compounds can be represented by the equations, The heat of formation of the spinels calculated from the measurements by the “Second Law method” is found to be in good agreement with calorimetrically determined values. Using an empirical correlation for the entropy of formation of cubic spinel phases from oxides with rock-salt and corundum structures and the measured high temperature cation distribution in ZnAl2O4, the entropy of transformation of ZnO from wurtzite to rock-salt structure is evaluated.
Resumo:
The Gibbs energies of formation of three compounds in the PbO-Al2O3 system—2PbO · Al2O3, PbO · Al2O3, andPbO· 6Al2O3—have been determined from potentiometric measurements on reversible solid-state galvanic cells [dformula Pt, Ir | Pb, alpha-Al[sub 2]O[sub 3], PbO [center-dot] 6Al[sub 2]O[sub 3] | ZrO[sub 2]-CaO | NiO, Ni | Pt] [dformula Pt | NiO, Ni | ZrO[sub 2]-CaO | Pb, PbO [center-dot] 6Al[sub 2]O[sub 3], PbO [center-dot] Al[sub 2]O[sub 3] | Ir, Pt] and [dformula Pt | NiO, Ni | ZrO[sub 2]-CaO | Pb, PbO [center-dot] Al[sub 2]O[sub 3], 2PbO [center-dot] Al[sub 2]O[sub 3] | Ir, Pt] in the temperature range 850–1375 K. The results are discussed in the light of reported phase diagrams for the PbO-Al2O3system. The partial pressures of different lead oxide species, PbnOn, n = 1–6, in the gas phase in equilibrium withthe aluminates are calculated by combining the results of this study with the mass-spectrometric data of Drowart et al.(1) for polymerization equilibria in the gas phase. The concentration of oxygen in lead in equilibrium with the aluminatesare also derived from the results and the literature data on the Gibbs energy of solution of oxygen in liquid lead.
Resumo:
A solid state e.m.f. cell with yttria-doped thoria as the electrolyte and a mixture of Cr + Cr sub 2 O sub 3 as the reference electrode, was employed for the measurement of the activity of manganese in the Co--Mn system at 1760 deg K, for 0.3 > X sub Mn > 0.05. The liquid alloy was contained in an alumina crucible and saturated with MnAl sub 2+2x O sub 4+3x . The cell can be represented by Pt, W, (Co--Mn) + MnAl sub 2+2x O sub 4+3x + Al sub 2 O sub 3 /ThO sub 2 --Y sub 2 O sub 3 /Cr + Cr sub 2 O sub 3 , Pt. The activity of manganese shows negative deviations from Raoult's law. The activities in the Co--Mn system are intermediate between those in the Fe--Mn and Ni--Mn systems. The Gibbs' energies of mixing in these systems follow the trends given by Miedema's model. 14 ref.--AA.
Resumo:
Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as ΔH° (298·15 K) = −672·69 (± 0·1) kJ mol−1, which compares with a value of −671·5 (± 4) kJ mol−1 given in Janaf tables. For solid MnF2, ΔH°(298·15 K) = − 854·97 (± 0·13) kJ mol−1, which is significantly different from a value of −803·3 kJ mol−1 given in the compilation by Barinet al.
Resumo:
The standard Gibbs energies of formation of platinum-rich intermetallic compounds in the systems Pt-Mg, Pt-Ca, and Pt-Ba have been measured in the temperature range of 950 to 1200 K using solid-state galvanic cells based on MgF2, CaF2, and BaF2 as solid electrolytes. The results are summarized by the following equations: ΔG° (MgPt7) = −256,100 + 16.5T (±2000) J/mol ΔG° (MgPt3) = −217,400 + 10.7T (±2000) J/mol ΔG° (CaPt5) = −297,500 + 13.0T (±5000) J/mol ΔG° (Ca2Pt7) = −551,800 + 22.3T (±5000) J/mol ΔG° (CaPt2) = −245,400 + 9.3T (±5000) J/mol ΔG° (BaPt5) = −238,700 + 8.1T (±4000) J/mol ΔG° (BaPt2) = −197,300 + 4.0T (±4000) J/mol where solid platinum and liquid alkaline earth metals are selected as the standard states. The relatively large error estimates reflect the uncertainties in the auxiliary thermodynamic data used in the calculation. Because of the strong interaction between platinum and alkaline earth metals, it is possible to reduce oxides of Group ILA metals by hydrogen at high temperature in the presence of platinum. The alkaline earth metals can be recovered from the resulting intermetallic compounds by distillation, regenerating platinum for recycling. The platinum-slag-gas equilibration technique for the study of the activities of FeO, MnO, or Cr2O3 in slags containing MgO, CaO, or BaO is feasible provided oxygen partial pressure in the gas is maintained above that corresponding to the coexistence of Fe and “FeO.”
Resumo:
The Gibbs energies of formation of MPt5 (MNd, Dy, Ho, Er) intermetallic compounds were determined in the temperature range 900–1100 K using the solid state cell Ta,M+MF3¦CaF2¦MPt5+Pt+MF3,Ta For M ≡ Sm, a mixture of Gd + GdF3 was used as the reference electrode. In the case of Eu, a mixture of Eu + EuF2 served as the reference electrode. The trifluorides of Sm and Eu are not stable in equilibrium with the metal. The fluoride phase coexisting with a SmPt5 + Pt mixture is SmF3, whereas EuF2 is the equilibrium phase in contact with EuPt5 + Pt. All the MPt5 compounds studied (except EuPt5) exhibit similar stability. Europium is divalent in the pure metal and trivalent in EuPt5. The energy required for the promotion of divalent Eu to the trivalent state accounts for the less negative Gibbs energy of formation of EuPt5. The enthalpies of formation of all the MPt5 compounds obtained in this study are in good agreement with Miedema's model.
Resumo:
The standard Gibbs' free energies of formation of compounds of type Cu2L%05 (Ln = Tb,Dy,Er,Yb) were measured using the solid state cell in the temperature range of 970 to 1323 K For formation of Cu2L?O5 compounds from their binary component oxides according to the reaction 2 CUO (s) + L%03 (s) -, Cu,,L%05 (s),the Gibbs' free energy changes can be represented by the following equations:AGO = 13 080 - 13.70 'I" (+80) J mol-' (Ln = Tb)AGq = 11 480 - 13.51 T (260) J mol-I (Ln = Dy)AGO = 10 750 - 13.99 T (260) J mol-I (Ln = Er)AGO = 9 920 - 13.90 T (260) J mol-' (Ln = Yb) Since formation of the compounds is endothermic, the compounds become thermodynamically unstable with respect to their component oxides below 955 K for Cu2Tb205, 850 K for Cu2Dy205, 768 K for Cu2Er205 and 714 K for Cu2Yb2OS When the oxygen partial pressure over Cu2L%05 is lowered, they decompose according to the scheme, 2 CU,L%O, (s) -r 2 L%03 (s) +2 cu20 (s) + 02(g)The equilibrium chemical potentials of oxygen corresponding to the dissociation reactions are computed from the emf data and auxiliary information on Cu20 and CuO. The computed decomposition temperatures at an oxygen partial pressure of 5.0 x ld Pa are compared with those obtained directly from combined thermogravimetric (TGA) and differential thermal analyses (DTA).The free energy, enthalpy and entropy of formation of Cu2Ln205 compounds show systematic variation with the ionic radius of the trivalent lanthanide ion. The trends obtained in this study are compared with information available in the literature. The staZbility of Cu2Ln205 compounds increases with the decrease in ionic radii of the ~ n ion~. +
Resumo:
An interesting topic for quite some time is an intermediate phase observed in chalcogenide glasses, which is related to network connectivity and rigidity. This phenomenon is exhibited by Si-Te-In glasses also. It has been addressed here by carrying out detailed thermal investigations by using Alternating Differential Scanning Calorimetry technique. An effort has also been made to determine the stability of these glasses using the data obtained from different thermodynamic quantities and crystallization kinetics of these glasses. Electrical switching behavior by recording I-V characteristics and variation of switching voltages with indium composition have been studied in these glasses for phase change memory applications. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Pure stoichiometric MgRh(2)O(4) could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh(2)O(3) in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh(2)O(3). The spinel phase can be considered as a solid solution of Mg(2)RhO(4) in MgRh(2)O(4). The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg(1+x)Rh(2-x)O(4) was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh(2)O(4) and Mg(2)RhO(4) were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured composition of the spinel solid solution in different phase fields and imposed oxygen partial pressures. The results can be summarized by the equations: MgO + beta -Rh(2)O(3) -> MgRh(2)O(4); Delta G degrees (+ 1010)/J mol(-1) = -32239 + 7.534T; 2MgO + RhO(2) -> Mg(2)RhO(4); Delta G degrees(+/- 1270)/J mol(-1) = 36427 -4.163T; Delta G(M)/J mol(-1) = 2RT(xInx + (1-x)In(1-x)) + 4650x(1-x), where Delta G degrees is the standard Gibbs free energy change for the reaction and G(M) is the free energy of mixing of the spinel solid solution Mg(1+x)Rh(2-x)O(4). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Superabsorbent polymers (SAPs) based on acrylic acid (AA), sodium acrylate (SA), and acrylamide (AM) were synthesized by inverse suspension polymerization using ethylene glycol dimethacrylate as the crosslinking agent. The equilibrium swelling capacities and the rates of swelling of SAPs varied with the AM content and followed first-order kinetics. The photodegradation of SAPs in their equilibrium swollen state was carried out by monitoring their swelling capacity and the residual weight fraction. The SAPs degraded in two stages, wherein the swelling capacity increased to a maximum and then subsequently decreased. Thermogravimetric analysis of the SAPs indicated that the copolymeric superabsorbents had intermediate thermal stability between the homopolymeric superabsorbents. The activation energies of SAPs with 0, 20, and 100 mol % AM content were determined by Kissinger method and were found to be 299, 248, and 147 kJ mol-1, respectively. The ultrasonic degradation of the superabsorbents was carried out in their equilibrium swollen state, and the change in the viscosity with ultrasonication time was used to quantify the degradation. The ultrasonic degradation of AA/SA superabsorbent was also investigated at various ultrasound intensities. The degradation rate coefficients were found to increase with the intensity of ultrasound. The ultrasonic degradation of AA/SA/AM (20% AM) was also carried out, and degradation rate was found to be more than that of the AA/SA superabsorbent. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The presence of new matter fields charged under the Standard Model gauge group at intermediate scales below the Grand Unification scale modifies the renormalization group evolution of the gauge couplings. This can in turn significantly change the running of the Minimal Supersymmetric Standard Model parameters, in particular the gaugino and the scalar masses. In the absence of new large Yukawa couplings we can parameterise all the intermediate scale models in terms of only two parameters controlling the size of the unified gauge coupling. As a consequence of the modified running, the low energy spectrum can be strongly affected with interesting phenomenological consequences. In particular, we show that scalar over gaugino mass ratios tend to increase and the regions of the parameter space with neutralino Dark Matter compatible with cosmological observations get drastically modified. Moreover, we discuss some observables that can be used to test the intermediate scale physics at the LHC in a wide class of models.