810 resultados para INSULIN RESISTANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Epidemiologic and experimental data have suggested that chlorogenic acid, which is a polyphenol contained in green coffee beans, prevents diet-induced hepatic steatosis and insulin resistance. OBJECTIVE We assessed whether the consumption of chlorogenic acid-rich coffee attenuates the effects of short-term fructose overfeeding, dietary conditions known to increase intrahepatocellular lipids (IHCLs), and blood triglyceride concentrations and to decrease hepatic insulin sensitivity in healthy humans. DESIGN Effects of 3 different coffees were assessed in 10 healthy volunteers in a randomized, controlled, crossover trial. IHCLs, hepatic glucose production (HGP) (by 6,6-d2 glucose dilution), and fasting lipid oxidation were measured after 14 d of consumption of caffeinated coffee high in chlorogenic acid (C-HCA), decaffeinated coffee high in chlorogenic acid, or decaffeinated coffee with regular amounts of chlorogenic acid (D-RCA); during the last 6 d of the study, the weight-maintenance diet of subjects was supplemented with 4 g fructose · kg(-1) · d(-1) (total energy intake ± SD: 143 ± 1% of weight-maintenance requirements). All participants were also studied without coffee supplementation, either with 4 g fructose · kg(-1) · d(-1) (high fructose only) or without high fructose (control). RESULTS Compared with the control diet, the high-fructose diet significantly increased IHCLs by 102 ± 36% and HGP by 16 ± 3% and decreased fasting lipid oxidation by 100 ± 29% (all P < 0.05). All 3 coffees significantly decreased HGP. Fasting lipid oxidation increased with C-HCA and D-RCA (P < 0.05). None of the 3 coffees significantly altered IHCLs. CONCLUSIONS Coffee consumption attenuates hepatic insulin resistance but not the increase of IHCLs induced by fructose overfeeding. This effect does not appear to be mediated by differences in the caffeine or chlorogenic acid content. This trial was registered at clinicaltrials.gov as NCT00827450.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Bariatric surgery reverses obesity-related comorbidities, including type 2 diabetes mellitus. Several studies have already described differences in anthropometrics and body composition in patients undergoing Roux-en-Y gastric bypass compared with laparoscopic adjustable gastric banding, but the role of adipokines in the outcomes after the different types of surgery is not known. Differences in weight loss and reversal of insulin resistance exist between the 2 groups and correlate with changes in adipokines. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7 kg/m(2)) underwent 2 types of laparoscopic weight loss surgery (Roux-en-Y gastric bypass=10, adjustable gastric banding=5). Weight, waist and hip circumference, body composition, plasma metabolic markers, and lipids were measured at set intervals during a 24-month period after surgery. RESULTS: At 24 months, patients who underwent Roux-en-Y were overweight (BMI 29.7 kg/m(2)), whereas patients who underwent gastric banding remained obese (BMI 36.3 kg/m(2)). Patients who underwent Roux-en-Y lost significantly more fat mass than patients who underwent gastric banding (mean difference 16.8 kg, P<.05). Likewise, leptin levels were lower in the patients who underwent Roux-en-Y (P=.003), and levels correlated with weight loss, loss of fat mass, insulin levels, and Homeostasis Model of Assessment 2. Adiponectin correlated with insulin levels and Homeostasis Model of Assessment 2 (r=-0.653, P=.04 and r=-0.674, P=.032, respectively) in the patients who underwent Roux-en-Y at 24 months. CONCLUSION: After 2 years, weight loss and normalization of metabolic parameters were less pronounced in patients who underwent gastric banding compared with patients who underwent Roux-en-Y gastric bypass. Our findings require confirmation in a prospective randomized trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a comorbidity of childhood obesity. OBJECTIVE We examined whole-body substrate metabolism and metabolic characteristics in obese adolescents with vs. without NAFLD. SUBJECTS Twelve obese (BMI ≥ 95th percentile) adolescents with and without NAFLD [intrahepatic triglyceride (IHTG) ≥5.0% vs. <5.0%] were pair-matched for race, gender, age and % body fat. METHODS Insulin sensitivity (IS) was assessed by a 3-h hyperinsulinemic-euglycemic clamp and whole-body substrate oxidation by indirect calorimetry during fasting and insulin-stimulated conditions. RESULTS Adolescents with NAFLD had increased (p < 0.05) abdominal fat, lipids, and liver enzymes compared with those without NAFLD. Fasting glucose concentration was not different between groups, but fasting insulin concentration was higher (p < 0.05) in the NAFLD group compared with those without. Fasting hepatic glucose production and hepatic IS did not differ (p > 0.1) between groups. Adolescents with NAFLD had higher (p < 0.05) fasting glucose oxidation and a tendency for lower fat oxidation. Adolescents with NAFLD had lower (p < 0.05) insulin-stimulated glucose disposal and lower peripheral IS compared with those without NAFLD. Although respiratory quotient (RQ) increased significantly from fasting to insulin-stimulated conditions in both groups (main effect, p < 0.001), the increase in RQ was lower in adolescents with NAFLD vs. those without (interaction, p = 0.037). CONCLUSION NAFLD in obese adolescents is associated with adverse cardiometabolic profile, peripheral insulin resistance and metabolic inflexibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replacement of growth hormone (GH) in patients suffering from GH deficiency (GHD) offers clinical benefits on body composition, exercise capacity, and skeletal integrity. However, GH replacement therapy (GHRT) is also associated with insulin resistance, but the mechanisms are incompletely understood. We demonstrate that in GH-deficient mice (growth hormone-releasing hormone receptor (Ghrhr)(lit/lit)), insulin resistance after GHRT involves the upregulation of the extracellular matrix (ECM) and the downregulation of microRNA miR-29a in skeletal muscle. Based on RNA deep sequencing of skeletal muscle from GH-treated Ghrhr(lit/lit) mice, we identified several upregulated genes as predicted miR-29a targets that are negative regulators of insulin signaling or profibrotic/proinflammatory components of the ECM. Using gain- and loss-of-function studies, five of these genes were confirmed as endogenous targets of miR-29a in human myotubes (PTEN, COL3A1, FSTL1, SERPINH1, SPARC). In addition, in human myotubes, IGF1, but not GH, downregulated miR-29a expression and upregulated COL3A1. These results were confirmed in a group of GH-deficient patients after 4 months of GHRT. Serum IGF1 increased, skeletal muscle miR-29a decreased, and miR-29a targets were upregulated in patients with a reduced insulin response (homeostatic model assessment of insulin resistance (HOMA-IR)) after GHRT. We conclude that miR-29a could contribute to the metabolic response of muscle tissue to GHRT by regulating ECM components and PTEN. miR-29a and its targets might be valuable biomarkers for muscle metabolism following GH replacement. KEY MESSAGES GHRT most significantly affects the ECM cluster in skeletal muscle from mice. GHRT downregulates miR-29a and upregulates miR-29a targets in skeletal muscle from mice. PTEN, COL3A1, FSTL1, SERPINH1, and SPARC are endogenous miR-29a targets in human myotubes. IGF1 decreases miR-29a levels in human myotubes. miR-29a and its targets are regulated during GHRT in skeletal muscle from humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance is a newly recognized problem in horses that may have been around a long time. You may be wondering what it is all about and how your horse may/may not be affected. It is probably not as common a problem as it may seem. This article will discuss insulin resistance including its causes, effects, diagnosis, treatment and prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies suggest that depression affects glucose metabolism, and therefore is a risk factor for insulin resistance. The association between depression and insulin resistance has been investigated in a number of studies, but there is no agreement on the results. The objective of this study is to survey the epidemiological studies, identify the ones that measured the association of depression (as exposure) with insulin resistance (as outcome), and perform a systematic review to assess the reliability and strength of the association. For high quality reporting, and assessment, this systematic review used the outlined procedures, guidelines and recommendations for reviews in health care, suggested by the Centre for Reviews and Dissemination, along with recommendations from the STROBE group (Strengthening the Reporting of Observational Studies in Epidemiology). Ovid MEDLINE 1996 to April Week 1 2010, was used to identify the relevant epidemiological studies. To identify the most relevant set of articles for this systematic review, a set of inclusion and exclusion criteria were applied. Six studies that met the specific criteria were selected. Key information from identified studies was tabulated, and the methodological quality, internal and external validity, and the strength of the evidence of the selected studies were assessed. The result from the tabulated data of the reviewed studies indicates that the studies either did not apply a case definition for insulin resistance in their investigation, or did not state a specific value for the index used to define insulin resistance. The quality assessment of the reviewed studies indicates that to assess the association between insulin resistance and depression, specifying a case definition for insulin resistance is important. The case definition for insulin resistance is defined by the World Health Organization and the European Group for the Study of Insulin Resistance as the insulin sensitivity index of the lowest quartile or lowest decile of a general population, respectively. Three studies defined the percentile cut-off point for insulin resistance, but did not give the insulin sensitivity index value. In these cases, it is not possible to compare the results. Three other studies did not define the cut-off point for insulin resistance. In these cases, it is hard to confirm the existence of insulin resistance. In conclusion, to convincingly answer our question, future studies need to adopt a clear case definition, define a percentile cut-off point and reference population, and give value of the insulin resistance measure at the specified percentile.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Cbl-associated protein (CAP) is a signaling protein that interacts with both c-Cbl and the insulin receptor that may be involved in the specific insulin-stimulated tyrosine phosphorylation of c-Cbl. The restricted expression of CAP in cells metabolically sensitive to insulin suggests an important potential role in insulin action. The expression of CAP mRNA and proteins are increased in 3T3-L1 adipocytes by the insulin sensitizing thiazolidinedione drugs, which are activators of the peroxisome proliferator-activated receptor γ (PPARγ). The stimulation of CAP expression by PPARγ activators results from increased transcription. This increased expression of CAP was accompanied by a potentiation of insulin-stimulated c-Cbl tyrosine phosphorylation. Administration of the thiazolidinedione troglitazone to Zucker (fa/fa) rats markedly increased the expression of the major CAP isoform in adipose tissue. This effect was sustained for up to 12 weeks of treatment and accompanied the ability of troglitazone to prevent the onset of diabetes and its complications. Thus, CAP is the first PPARγ-sensitive gene identified that participates in insulin signaling and may play a role in thiazolidinedione-induced insulin sensitization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39–50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3′ kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34–57%, and association of p85α with both IRS proteins was reduced by 39–52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver–lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca2+ is believed to play a role in mediating insulin action and dysregulation of Ca2+ flux is observed in diabetic animals and humans, we examined the status of intracellular Ca2+ in mice carrying the dominant agouti allele, viable yellow (Avy). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca2+]i) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca2+]i in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca2+]i.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE - To assess the concurrent validity of fasting indexes of insulin sensitivity and secretion in - obese prepubertal (Tanner stage 1) children and pubertal (Tanner stages 2-5) glucose tolerance test (FSIVGTT) as a criterion measure. RESEARCH DESIGN AND METHODS - Eighteen obese children and adolescents (11 girls and 7 boys, mean age 12.2 +/- 2.4 years, mean BMI 35.4 +/- 6.2 kg/m(2), mean BMI-SDS 3.5 +/- 0.5, 7 prepubertal and I I pubertal) participated in the study. All participants underwent an insulin-modified FSIVGTT on two occasions, and 15 repeated this test a third time (mean 12.9 and 12.0 weeks apart). S-i measured by the FSIVGTT was compared with homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR), quantitative insulin-sensitivity check index (QUICKI), fasting glucose-to-insulin ratio (FGIR), and fasting insulin (estimates of insulin sensitivity derived from fasting samples). The acute insulin response (AIR) measured by the FSIVGTT was compared with HOMA of percent beta-cell function (HOMA-beta%), FGIR, and fasting insulin (estimates of insulin secretion derived from fasting samples). RESULTS - There was a significant negative correlation between HOMA-IR and S-i (r = -0.89, r = -0.90, and r = -0.81, P < 0.01) and a significant positive correlation between QUICKI and S-i (r = 0.89, r = 0.90, and r = 0.81, P < 0.01) at each time point. There was a significant positive correlation between FGIR and S-i (r = 0.91, r = 0.91, and r = 0.82, P < 0.01) and a significant negative correlation between fasting insulin and S-i (r = -90, r = -0.90, and r = -0.88, P < 0.01). HOMA-beta% was not as strongly correlated with AIR (r = 0.60, r = 0.54, and r = 0.61, P < 0.05). CONCLUSIONS - HOMA-IR, QUICKI, FGIR, and fasting insulin correlate strongly with S-i assessed by the FSIVGTT in obese children and adolescents. Correlations between HOMA-β% FGIR and fasting insulin, and AIR were not as strong. Indexes derived from fasting samples are a valid tool for assessing insulin sensitivity in prepubertal and pubertal obese children.