892 resultados para INJECTION ATTACKS
Resumo:
Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (i) low resource settings while achieving maximal lysis (ii) high throughput of target molecules to be detected (iii) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (iv) requirement of fast, accurate and yet scalable methods (v) multifunctionality toward process monitoring and (vi) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.
Resumo:
Heat and mass transfer studies in a calandria based reactor is quite complex both due to geometry and due to the complex mixing flow. It is challenging to devise optimum operating conditions with efficient but safe working range for such a complex configuration. Numerical study known to be very effective is taken up for investigation. In the present study a 3D RANS code with turbulence model has been used to compute the flow fields and to get the heat transfer characteristics to understand certain design parameters of engineering importance. The angle of injection and of the coolant liquid has a large effect on the heat transfer within the reactor.
Resumo:
We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 degrees C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites. (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
The following paper presents a Powerline Communication (PLC) Method for Single Phase interfaced inverters in domestic microgrids. The PLC method is based on the injection of a repeating sequence of a specific harmonic, which is then modulated on the fundamental component of the grid current supplied by the inverters to the microgrid. The power flow and information exchange are simultaneously accomplished by the grid interacting inverters based on current programmed vector control, hence there is no need for dedicated hardware. Simulation results have been shown for inter-inverter communication under different operating conditions to propose the viability. These simulations have been experimentally validated and the corresponding results have also been presented in the paper.
Resumo:
An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.
Resumo:
The present work reports the biocompatibility property of injection molded HDPE-HA-Al2O3 hybrid composites. In vitro cytocompatibility results reveal that osteogenic cell viability and bone mineralization are favorably supported in a statistically significant manner on HDPE-20% HA-20% Al2O3 composite, in comparison to HDPE-40 wt.% HA or HDPE-40 wt.% Al2O3. The difference in cytocompatibility property is explained in terms of difference in substrate wettability/surface energy and importantly, both the cell proliferation at 7 days or bone mineralization at 21 days on HDPE-20% HA-20% Al2O3 composite are either comparable or better than sintered HA. The progressive healing of cylindrical femoral bone defects in rabbit animal model was assessed by implantation experiments over 1, 4 and 12 weeks. Based on the histological analysis as well as histomorphometrical evaluation, a better efficacy of HDPE-20% HA-20% Al2O3 over high-density polyethylene (HDPE) for bone regeneration and neobone formation at host bone-implant interface was established. Taken together, the present study unequivocally establishes that despite the presence of 20% Al2O3, HDPE-based hybrid composites are as biocompatible as HA in vitro or better than HDPE in vivo.
Resumo:
Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time tau similar to 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of t. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a tau of similar to 0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices.
Resumo:
The concept of barrel stratification of air-fuel mixture is evaluated for a port gas injection (PGI) single cylinder spark ignition (SI) internal combustion (IC) engine using a transient three-dimensional computational fluid dynamic (CFD) model. The gaseous fuel used in the study is compressed natural gas (CNG). It is observed that compared to the premixed gas carburettor case, a substantial amount of in-cylinder stratification can be achieved with port gas injection system. A detailed parametric study is reported to understand the effect of the various injection parameters such as injection location, injection orientation, start of injection (SOT) and its duration, and injection rate. Furthermore, the best injection timing is evaluated for various load and speed cases. It is observed that the best stratification pattern can be achieved at 50% engine load. The injection location is observed to have a profound effect on the in-cylinder stratification pattern, and injection towards the side of the spark plug is observed to give a rich fuel-air mixture near the spark plug. It is also shown that there exists an optimal injection pressure.
Resumo:
The ac-side terminal voltages of parallel-connected converters are different if the line reactive drops of the individual converters are different. This could result either from differences in per-phase inductances or from differences in the line currents of the converters. In such cases, the modulating signals are different for the converters. Hence, the common-mode (CM) voltages for the converters, injected by conventional space vector pulsewidth modulation (CSVPWM) to increase dc-bus utilization, are different. Consequently, significant low-frequency zero-sequence circulating currents result. This paper proposes a new modulation method for parallel-connected converters with unequal terminal voltages. This method does not cause low-frequency zero-sequence circulating currents and is comparable with CSVPWM in terms of dc-bus utilization and device power loss. Experimental results are presented at a power level of 150 kVA from a circulating-power test setup, where the differences in converter terminal voltages are quite significant.
Resumo:
Several papers have studied fault attacks on computing a pairing value e(P, Q), where P is a public point and Q is a secret point. In this paper, we observe that these attacks are in fact effective only on a small number of pairing-based protocols, and that too only when the protocols are implemented with specific symmetric pairings. We demonstrate the effectiveness of the fault attacks on a public-key encryption scheme, an identity-based encryption scheme, and an oblivious transfer protocol when implemented with a symmetric pairing derived from a supersingular elliptic curve with embedding degree 2.
Resumo:
An area-efficient, wideband RF frequency synthesizer, which simultaneously generates multiple local oscillator (LO) signals, is designed. It is suitable for parallel wideband RF spectrum sensing in cognitive radios. The frequency synthesizer consists of an injection locked oscillator cascade (ILOC) where all the LO signals are derived from a single reference oscillator. The ILOC is implemented in a 130-nm technology with an active area of . It generates 4 uniformly spaced LO carrier frequencies from 500 MHz to 2 GHz. This design is the first known implementation of a CMOS based ILOC for wide-band RF spectrum sensing applications.
Resumo:
The carrier density dependent current-voltage (J V) characteristics of electrochemically prepared poly(3-methylthiophene) (P3MeT) have been investigated in Pt/P3MeT/Al devices, as a function of temperature from 280 to 84 K. In these devices, the charge transport is found to be mainly governed by different transport regimes of space charge limited conduction (SCLC). In a lightly doped device, SCLC controlled by exponentially distributed traps (Vl+1 law, l > 1) is observed in the intermediate voltage range (0.5-2 V) at all temperatures. However, at higher bias (> 2 V), the current deviates from the usual Vl+1 law where the slope is found to be less than 2 of the logJ-logV plot, which is attributed to the presence of the injection barrier. These deviations gradually disappear at higher doping level due to reduction in the injection barrier. Numerical simulations of the Vl+1 law by introducing the injection barrier show good agreement with experimental data. The results show that carrier density can tune the charge transport mechanism in Pt/P3MeT/Al devices to understand the non-Ohmic behavior. The plausible reasons for the origin of injection barrier and the transitions in the transport mechanism with carrier density are discussed. (C) 2015 AIP Publishing LLC.
Resumo:
A split-phase induction motor is fed from two three-phase voltage source inverters for speed control. This study analyses carrier-comparison based pulse width modulation (PWM) schemes for a split-phase motor drive, from a space-vector perspective. Sine-triangle PWM, one zero-sequence injection PWM where the same zero-sequence signal is used for both the inverters, and another zero-sequence injection PWM where different zero-sequence signals are employed for the two inverters are considered. The set of voltage vectors applied, the sequence in which the voltage vectors are applied, and the resulting current ripple vector are analysed for all the PWM methods. Besides all the PWM methods are compared in terms of dc bus utilisation. For the same three-phase sine reference, the PWM method with different zero-sequence signals for the two inverters is found to employ a set of vectors different from the other methods. Both analysis and experimental results show that this method results in lower total harmonic distortion and higher dc bus utilisation than the other two PWM methods.
Resumo:
The stiffness behaviour of injection moulded short glass fibre/impact modifier/polypropylene hybrid composites has been investigated in this work by theoretical predictions and experiments. Predictions from the self-consistent method were found to be in good agreement with test results for the impact modifier/polypropylene blends. By taking into account of the fibre orientation distributions in the skin and core layers, the values of Young's modulus for the skin and core layers were predicted by employing Eshelby's equivalent inclusion method and the average induced strain approach. The prediction of the values of Young's modulus for the whole sample was obtained by applying the simple mixture theory of laminated composites to the predicted results for the skin and core layers. Good correlation between predicted and experimental Young's modulus values were found.