982 resultados para INFORMATION MATRIX


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"January 1996"--Cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"...made available through a partnership of the Illinois Dept. of Commerce and Economic Opportunity's Illinois Entrpreneurship Network Business Information Center, the Small Business Development Center Network and the U.S. Small Business Administration."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that deterministic quantum computing with a single bit can determine whether the classical limit of a quantum system is chaotic or integrable using O(N) physical resources, where N is the dimension of the Hilbert space of the system under study. This is a square-root improvement over all known classical procedures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the nonlinear kicked top.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding motifs that can elucidate rules that govern peptide binding to medically important receptors is important for screening targets for drugs and vaccines. This paper focuses on elucidation of peptide binding to I-A(g7) molecule of the non-obese diabetic (NOD) mouse - an animal model for insulin-dependent diabetes mellitus (IDDM). A number of proposed motifs that describe peptide binding to I-A(g7) have been proposed. These motifs results from independent experimental studies carried out on small data sets. Testing with multiple data sets showed that each of the motifs at best describes only a subset of the solution space, and these motifs therefore lack generalization ability. This study focuses on seeking a motif with higher generalization ability so that it can predict binders in all A(g7) data sets with high accuracy. A binding score matrix representing peptide binding motif to A(g7) was derived using genetic algorithm (GA). The evolved score matrix significantly outperformed previously reported

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical implementation of quantum information processing is one of the major challenges of current research. In the last few years, several theoretical proposals and experimental demonstrations on a small number of qubits have been carried out, but a quantum computing architecture that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is still lacking. In particular, a major ultimate objective is the construction of quantum simulators, yielding massively increased computational power in simulating quantum systems. Here we investigate promising routes towards the actual realization of a quantum computer, based on spin systems. The first one employs molecular nanomagnets with a doublet ground state to encode each qubit and exploits the wide chemical tunability of these systems to obtain the proper topology of inter-qubit interactions. Indeed, recent advances in coordination chemistry allow us to arrange these qubits in chains, with tailored interactions mediated by magnetic linkers. These act as switches of the effective qubit-qubit coupling, thus enabling the implementation of one- and two-qubit gates. Molecular qubits can be controlled either by uniform magnetic pulses, either by local electric fields. We introduce here two different schemes for quantum information processing with either global or local control of the inter-qubit interaction and demonstrate the high performance of these platforms by simulating the system time evolution with state-of-the-art parameters. The second architecture we propose is based on a hybrid spin-photon qubit encoding, which exploits the best characteristic of photons, whose mobility is exploited to efficiently establish long-range entanglement, and spin systems, which ensure long coherence times. The setup consists of spin ensembles coherently coupled to single photons within superconducting coplanar waveguide resonators. The tunability of the resonators frequency is exploited as the only manipulation tool to implement a universal set of quantum gates, by bringing the photons into/out of resonance with the spin transition. The time evolution of the system subject to the pulse sequence used to implement complex quantum algorithms has been simulated by numerically integrating the master equation for the system density matrix, thus including the harmful effects of decoherence. Finally a scheme to overcome the leakage of information due to inhomogeneous broadening of the spin ensemble is pointed out. Both the proposed setups are based on state-of-the-art technological achievements. By extensive numerical experiments we show that their performance is remarkably good, even for the implementation of long sequences of gates used to simulate interesting physical models. Therefore, the here examined systems are really promising buildingblocks of future scalable architectures and can be used for proof-of-principle experiments of quantum information processing and quantum simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse the dynamics of a number of second order on-line learning algorithms training multi-layer neural networks, using the methods of statistical mechanics. We first consider on-line Newton's method, which is known to provide optimal asymptotic performance. We determine the asymptotic generalization error decay for a soft committee machine, which is shown to compare favourably with the result for standard gradient descent. Matrix momentum provides a practical approximation to this method by allowing an efficient inversion of the Hessian. We consider an idealized matrix momentum algorithm which requires access to the Hessian and find close correspondence with the dynamics of on-line Newton's method. In practice, the Hessian will not be known on-line and we therefore consider matrix momentum using a single example approximation to the Hessian. In this case good asymptotic performance may still be achieved, but the algorithm is now sensitive to parameter choice because of noise in the Hessian estimate. On-line Newton's method is not appropriate during the transient learning phase, since a suboptimal unstable fixed point of the gradient descent dynamics becomes stable for this algorithm. A principled alternative is to use Amari's natural gradient learning algorithm and we show how this method provides a significant reduction in learning time when compared to gradient descent, while retaining the asymptotic performance of on-line Newton's method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Possibilities for investigations of 43 varieties of file formats (objects), joined in 10 groups; 89 information attacks, joined in 33 groups and 73 methods of compression, joined in 10 groups are described in the paper. Experimental, expert, possible and real relations between attacks’ groups, method’ groups and objects’ groups are determined by means of matrix transformations and the respective maximum and potential sets are defined. At the end assessments and conclusions for future investigation are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a theoretical-graph method of determining the fault tolerance degree of the computer network interconnections and nodes. Experimental results received from simulations of this method over a distributed computing network environment are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Work is partially supported by the Lithuanian State Science and Studies Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Work supported by the Lithuanian State Science and Studies Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Work is partially supported by the Lithuanian State Science and Studies Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the volume of image data and the need of using it in various applications is growing significantly in the last days it brings a necessity of retrieval efficiency and effectiveness. Unfortunately, existing indexing methods are not applicable to a wide range of problem-oriented fields due to their operating time limitations and strong dependency on the traditional descriptors extracted from the image. To meet higher requirements, a novel distance-based indexing method for region-based image retrieval has been proposed and investigated. The method creates premises for considering embedded partitions of images to carry out the search with different refinement or roughening level and so to seek the image meaningful content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of the sheer volume of online product reviews makes it possible to derive implicit demographic information of product adopters from review documents. This paper proposes a novel approach to the extraction of product adopter mentions from online reviews. The extracted product adopters are the ncategorise into a number of different demographic user groups. The aggregated demographic information of many product adopters can be used to characterize both products and users, which can be incorporated into a recommendation method using weighted regularised matrix factorisation. Our experimental results on over 15 million reviews crawled from JINGDONG, the largest B2C e-commerce website in China, show the feasibility and effectiveness of our proposed frame work for product recommendation.