992 resultados para IN-VITRO ASSESSMENT
Resumo:
The direct killing of target cells by cytotoxic T lymphocytes (CTLs) plays a fundamental role in protective immunity to viral, bacterial, protozoan and fungi infections, as well as to tumor cells. In vivo cytotoxic assays take into account the interaction of target and effector cells in the context of the proper microenvironment making the analysis biologically more relevant than in vitro cytotoxic assays. Thus, the development, improvement and validation of in vivo methods are necessary in view of the importance of the results they may provide. We describe and discuss in this manuscript a method to evaluate in vivo specific cytotoxic T lymphocyte killing. We used as model system mice immunized with human recombinant replication-deficient adenovirus 5 (HAd5) containing different transgenes as the trigger of a CTL-mediated immune response. To these mice, we adoptively transferred syngeneic cells labeled with different vital fluorescent dyes. Donor cells were pulsed (target) or not (control non-target) with distinct CD8 T-cell epitopes, mixed in a 1:1 ratio and injected i.v. into immunized or non-immunized recipient mice. After 18-24h, spleen cells are collected and analysed by flow cytometry. A deviation from the 1:1 ratio of control and target cell populations indicates antigen specific lysis of target cells
Resumo:
In the last decade, the mechanical characterization of bone segments has been seen as a fundamental key to understanding how the distribution of physiological loads works on the bone in everyday life, and the resulting structural deformations. Therefore, characterization allows to obtain the main load directions and, consequently, to observe the structural lamellae of the bone disposal, in order to recreate a prosthesis using artificial materials that behave naturally. This thesis will expose a modular system which provides the mechanical characterization of bone in vitro segment, with particular attention to vertebrae, as the current object of study and research in the lab where I did my thesis work. The system will be able to acquire and process all the appropriately conditioned signals of interest for the test, through dedicated hardware and software architecture, with high speed and high reliability. The aim of my thesis is to create a system that can be used as a versatile tool for experimentation and innovation for future tests of the mechanical characterization of biological components, allowing a quantitative and qualitative assessment of the deformation in analysis, regardless of anatomical regions of interest.
Resumo:
Zur Registrierung von Pharmazeutika ist eine umfassende Analyse ihres genotoxischen Potentials von Nöten. Aufgrund der Vielzahl genotoxischer Mechanismen und deren resultierenden Schäden wird ein gestaffeltes Testdesign durch die ICH-Richtlinie S2(R1) „Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2(R1)“ definiert, um alle genotoxischen Substanzen zu identifizieren. Die Standardtestbatterie ist in der frühen Phase der Arzneimittelentwicklung aufgrund des geringen Durchsatzes und des Mangels an verfügbarer Substanzmenge vermindert anwendbar. Darüber hinaus verfügen in vitro Genotoxizitätstests in Säugerzellen über eine relativ geringe Spezifität. Für eine vollständige Sicherheitsbeurteilung wird eine in vivo Testung auf Kanzerogenität benötigt. Allerdings sind diese Testsysteme kosten- und zeitintensiv. Aufgrund dessen zielen neue Forschungsansätze auf die Verbesserung der Prädiktivität und die Erfassung des genotoxischen Potentials bereits in der frühen Phase der Arzneimittelentwicklung ab. Die high content imaging (HCI)-Technologie offeriert einen Ansatz zur Verbesserung des Durchsatzes verglichen mit der Standardtestbatterie. Zusätzlich hat ein Zell-basiertes Modell den Vorteil Daten relativ schnell bei gleichzeitig geringem Bedarf an Substanzmenge zu generieren. Demzufolge ermöglichen HCI-basierte Testsysteme eine Prüfung in der frühen Phase der pharmazeutischen Arzneimittelentwicklung. Das Ziel dieser Studie ist die Entwicklung eines neuen, spezifischen und sensitiven HCI-basierten Testsytems für Genotoxine und Progenotoxine in vitro unter Verwendung von HepG2-Zellen gewesen. Aufgrund ihrer begrenzten metabolischen Kapazität wurde ein kombiniertes System bestehend aus HepG2-Zellen und einem metabolischen Aktivierungssystem zur Testung progenotoxischer Substanzen etabliert. Basierend auf einer vorherigen Genomexpressionsprofilierung (Boehme et al., 2011) und einer Literaturrecherche wurden die folgenden neun unterschiedlichen Proteine der DNA-Schadensantwort als putative Marker der Substanz-induzierten Genotoxizität ausgewählt: p-p53 (Ser15), p21, p-H2AX (Ser139), p-Chk1 (Ser345) p-ATM (Ser1981), p-ATR (Ser428), p-CDC2 (Thr14/Tyr15), GADD45A und p-Chk2 (Thr68). Die Expression bzw. Aktivierung dieser Proteine wurde 48 h nach Behandlung mit den (pro-) genotoxischen Substanzen (Cyclophosphamid, 7,12-Dimethylbenz[a]anthracen, Aflatoxin B1, 2-Acetylaminofluoren, Methylmethansulfonat, Actinomycin D, Etoposid) und den nicht-genotoxischen Substanzen (D-Mannitol, Phenforminhydrochlorid, Progesteron) unter Verwendung der HCI-Technologie ermittelt. Die beste Klassifizierung wurde bei Verwendung der folgenden fünf der ursprünglichen neun putativen Markerproteine erreicht: p-p53 (Ser15), p21, p-H2AX (Ser139), p-Chk1 (Ser345) und p-ATM (Ser1981). In einem zweiten Teil dieser Arbeit wurden die fünf ausgewählten Proteine mit Substanzen, welche von dem European Centre for the Validation of Alternative Methods (ECVAM) zur Beurteilung der Leistung neuer oder modifizierter in vitro Genotoxizitätstests empfohlen sind, getestet. Dieses neue Testsystem erzielte eine Sensitivität von 80 % und eine Spezifität von 86 %, was in einer Prädiktivität von 84 % resultierte. Der synergetische Effekt dieser fünf Proteine ermöglicht die Identifizierung von genotoxischen Substanzen, welche DNA-Schädigungen durch eine Vielzahl von unterschiedlichen Mechanismen induzieren, mit einem hohen Erfolg. Zusammenfassend konnte ein hochprädiktives Prüfungssystem mit metabolischer Aktivierung für ein breites Spektrum potenziell genotoxischer Substanzen generiert werden, welches sich aufgrund des hohen Durchsatzes, des geringen Zeitaufwandes und der geringen Menge benötigter Substanz zur Substanzpriorisierung und -selektion in der Phase der Leitstrukturoptimierung eignet und darüber hinaus mechanistische Hinweise auf die genotoxische Wirkung der Testsubstanz liefert.
Resumo:
Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.
Resumo:
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ? -0.86) as well as calcium release (r(2) ? -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Resumo:
The first part of this three-part review on the relevance of laboratory testing of composites and adhesives deals with approval requirements for composite materials. We compare the in vivo and in vitro literature data and discuss the relevance of in vitro analyses. The standardized ISO protocols are presented, with a focus on the evaluation of physical parameters. These tests all have a standardized protocol that describes the entire test set-up. The tests analyse flexural strength, depth of cure, susceptibility to ambient light, color stability, water sorption and solubility, and radiopacity. Some tests have a clinical correlation. A high flexural strength, for instance, decreases the risk of fractures of the marginal ridge in posterior restorations and incisal edge build-ups of restored anterior teeth. Other tests do not have a clinical correlation or the threshold values are too low, which results in an approval of materials that show inferior clinical properties (e.g., radiopacity). It is advantageous to know the test set-ups and the ideal threshold values to correctly interpret the material data. Overall, however, laboratory assessment alone cannot ensure the clinical success of a product.
Resumo:
This study aimed at testing how active and inactive enamel caries lesions differ by their degree of resin infiltration, and whether the choice of acid pretreatment plays a crucial role. Four examiners assessed 104 human molars and premolars with noncavitated enamel lesions and classified them as 'active' or 'inactive' using the Nyvad criteria. Forty-five teeth were included in this study after independent unanimous lesion activity assessment. Lesions were cut perpendicularly into 2 halves. Each half lesion was pretreated with either 15% hydrochloric acid or 35% phosphoric acid. The lesions were infiltrated after staining with rhodamine isothiocyanate. Thin sections of 100 µm were prepared and the specimens were bleached with 30% hydrogen peroxide. The specimens were then counterstained with sodium fluorescein, subjected to confocal laser scanning microscopy and analyzed quantitatively. Outcome parameters were maximum and average infiltration depths as well as relative penetration depths and areas. In active lesions no significant difference of percentage maximum penetration depth and percentage average penetration depth between lesions pretreated with hydrochloric or phosphoric acid could be observed. In inactive lesions, however, phosphoric acid pretreatment resulted in significantly lower penetration compared to hydrochloric acid pretreatment. Surface conditioning with hydrochloric acid led to similar infiltration results in active and inactive lesions. Moreover, inactive lesions showed greater variability in all assessed infiltration parameters than did active lesions. In conclusion, caries lesion activity and acid pretreatment both influenced the infiltration. The use of phosphoric acid to increase permeability of the surface layer of active lesions should be further explored.
Resumo:
The in vitro effects of 4 arylimidamides (DB811, DB786, DB750 and DB766) against the proliferative tachyzoite stage of the apicomplexan parasite Besnoitia besnoiti were investigated. These four compounds had been shown earlier to exhibit in vitro activities in the nanomolar range against the related apicomplexans Neospora caninum and Toxoplasma gondii. Real-time-PCR was used to assess B. besnoiti intracellular proliferation in vitro. Preliminary assessment by light microscopy identified DB811 and DB750 as the most promising compounds, while DB786 and DB766 were much less effective. Three-day-growth assays and quantitative real-time PCR was used for IC50 determination of DB811 (0.079 muM) and DB750 (0.56 muM). Complete growth inhibition was observed at 1.6 muM for DB 811 and 1.7 muM for DB750. However, when infected cultures were treated for 14 days, proliferation of parasites occurred again in cultures treated with DB750 from day 4 onwards, while the proliferation of DB811-treated tachyzoites remained inhibited. Electron microscopy of B. besnoiti-infected fibroblast cultures fixed and processed at different time-points following the initiation of drug treatments revealed that DB811 exerted a much higher degree of ultrastructural alterations compared to DB750. These results show that arylimidamides such as DB811 could potentially become an important addition to the anti-parasitic arsenal for food animal production, especially in cattle.
Resumo:
Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i) human monocyte derived macrophages (MDM) monocultures, and (ii) a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf) or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2) and carboxyl (−COOH) surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α). In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8) was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary surfactant should be considered for future lung in vitro risk assessment studies. Keywords: Multi-walled carbon nanotubes (MWCNTs); Pulmonary surfactant (Curosurf); Macrophages; Epithelial cells; Dendritic cells; Triple cell co-culture; Pro-inflammatory and oxidative reactions
Resumo:
Here we present the development of a visual evaluation system for routine assessment of in vitro-engineered cartilaginous tissue. Neocartilage was produced by culturing human articular chondrocytes in pellet culture systems or in a scaffold-free bioreactor system. All engineered tissues were embedded in paraffin and were sectioned and stained with Safranin O-fast green. The evaluation of each sample was broken into 3 categories (uniformity and intensity of Safranin O stain, distance between cells/amount of matrix produced, and cell morphology), and each category had 4 components with a score ranging from 0 to 3. Three observers evaluated each sample, and the new system was independently tested against an objective computer-based histomorphometry system. Pellets were also assessed biochemically for glycosaminoglycan (GAG) content. Pellet histology scores correlated significantly with GAG contents and were in agreement with the computer-based histomorphometry system. This system allows a valid and rapid assessment of in vitro-generated cartilaginous tissue that has a relevant association with objective parameters indicative of cartilage quality.
Resumo:
OBJECTIVE: Systematic assessment of the in vitro research on high potency effects. METHOD: Publications of experiments were collected through databases, experts, previous reviews, citation tracking. Inclusion criteria: stepwise agitated dilutions <10(-23); cells or molecules from human or animal. Experiments were assessed with the modified SAPEH score. RESULTS: From 75 publications, 67 experiments (1/3 of them replications) were evaluated. Nearly 3/4 of them found a high potency effect, and 2/3 of those 18 that scored 6 points or more and controlled contamination. Nearly 3/4 of all replications were positive. Design and experimental models of the reviewed experiments were inhomogenous, most were performed on basophiles. CONCLUSIONS: Even experiments with a high methodological standard could demonstrate an effect of high potencies. No positive result was stable enough to be reproduced by all investigators. A general adoption of succussed controls, randomization and blinding would strengthen the evidence of future experiments.
Resumo:
This study compared the performance of fluorescence-based methods, radiographic examination, and International Caries Detection and Assessment System (ICDAS) II on occlusal surfaces. One hundred and nineteen permanent human molars were assessed twice by 2 experienced dentists using the laser fluorescence (LF and LFpen) and fluorescence camera (FC) devices, ICDAS II and bitewing radiographs (BW). After measuring, the teeth were histologically prepared and assessed for caries extension. The sensitivities for dentine caries detection were 0.86 (FC), 0.78 (LFpen), 0.73 (ICDAS II), 0.51 (LF) and 0.34 (BW). The specificities were 0.97 (BW), 0.89 (LF), 0.65 (ICDAS II), 0.63 (FC) and 0.56 (LFpen). BW presented the highest values of likelihood ratio (LR)+ (12.47) and LR- (0.68). Rank correlations with histology were 0.53 (LF), 0.52 (LFpen), 0.41 (FC), 0.59 (ICDAS II) and 0.57 (BW). The area under the ROC curve varied from 0.72 to 0.83. Inter- and intraexaminer intraclass correlation values were respectively 0.90 and 0.85 (LF), 0.93 and 0.87 (LFpen) and 0.85 and 0.76 (FC). The ICDAS II kappa values were 0.51 (interexaminer) and 0.61 (intraexaminer). The BW kappa values were 0.50 (interexaminer) and 0.62 (intraexaminer). The Bland and Altman limits of agreement were 46.0 and 38.2 (LF), 55.6 and 40.0 (LFpen) and 1.12 and 0.80 (FC), for intra- and interexaminer reproducibilities. The posttest probability for dentine caries detection was high for BW and LF. In conclusion, LFpen, FC and ICDAS II presented better sensitivity and LF and BW better specificity. ICDAS II combined with BW showed the best performance and is the best combination for detecting caries on occlusal surfaces.
Resumo:
Percutaneous vertebroplasty, comprising an injection of polymethylmethacrylate (PMMA) into vertebral bodies, is a practical procedure for the stabilization of osteoporotic compression fractures as well as other weakening lesions. Cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the material plays a key role in this context. In order to enhance the safety for the patient, a rheometer system was developed to measure the cement viscosity intraoperatively. For this development, it is of great importance to know the proper viscosity to start the procedure determined by experienced surgeons and the relation between the time period when different injection devices are used and the cement viscosity. The purpose of the study was to investigate the viscosity ranges for different injection systems during conventional vertebroplasty. Clinically observed viscosity values and related time periods showed high scattering. In order to get a better understanding of the clinical observations, cement viscosity during hardening at different ambient temperatures and by simulation of the body temperature was investigated in vitro. It could be concluded, that the direct viscosity assessment with a rheometer during vertebroplasty can help clinicians to define a lower threshold viscosity and thereby decrease the risk of leakage and make adjustments to their injection technique in real time. Secondly, the acceleration in hardening of PMMA-based cements at body temperature can be useful in minimizing leakages by addressing them with a short injection break.
Resumo:
Through the concerted evaluations of thousands of commercial substances for the qualities of persistence, bioaccumulation, and toxicity as a result of the United Nations Environment Program's Stockholm Convention, it has become apparent that fewer empirical data are available on bioaccumulation than other endpoints and that bioaccumulation models were not designed to accommodate all chemical classes. Due to the number of chemicals that may require further assessment, in vivo testing is cost prohibitive and discouraged due to the large number of animals needed. Although in vitro systems are less developed and characterized for fish, multiple high-throughput in vitro assays have been used to explore the dietary uptake and elimination of pharmaceuticals and other xenobiotics by mammals. While similar processes determine bioaccumulation in mammalian species, a review of methods to measure chemical bioavailability in fish screening systems, such as chemical biotransformation or metabolism in tissue slices, perfused tissues, fish embryos, primary and immortalized cell lines, and subcellular fractions, suggest quantitative and qualitative differences between fish and mammals exist. Using in vitro data in assessments for whole organisms or populations requires certain considerations and assumptions to scale data from a test tube to a fish, and across fish species. Also, different models may incorporate the predominant site of metabolism, such as the liver, and significant presystemic metabolism by the gill or gastrointestinal system to help accurately convert in vitro data into representative whole-animal metabolism and subsequent bioaccumulation potential. The development of animal alternative tests for fish bioaccumulation assessment is framed in the context of in vitro data requirements for regulatory assessments in Europe and Canada.