984 resultados para IL-23R-GFP reporter mouse


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nella presente tesi indaghiamo la potenzialità di LCM e Reverse Phase Protein microarray negli studi clinici. Si analizza la possibilità di creare una bio banca con line cellular primarie, al fine di conseguire drug test di sensibilità prima di decidere il trattamento da somministrare ai singoli pazienti. Sono stati ottenuti profili proteomici da biopsie pre e post terapia. I risultati dimostrano che questa piattaforma mostra il meccanismo di resistenza acquisito durante la terapia biologica. Questo ci ha portato ad analizzare una possibile stratificazione per pazienti con mCRC . I dati hanno rivelato distinti pathway di attivazione tra metastasi resecabile e non resecabili. I risultati mostrano inoltre due potenziali bersagli farmacologici. Ma la valutazione dell'intero tumore tramite singole biopsie sembra essere un problema a causa dell’eterogeneità intratumorale a livello genomico. Abbiamo indagato questo problema a livello dell'architettura del segnale in campioni di mCRC e ccRCC . I risultati indicano una somiglianza complessiva nei profili proteomici all'interno dello stesso tumore. Considerando che una singola biopsia è rappresentativa di un intera lesione , abbiamo studiato la possibilità di creare linee di cellule primarie, per valutare il profilo molecolare di ogni paziente. Fino ad oggi non c'era un protocollo per creare linee cellulari immortalizzate senza alcuna variazione genetica . abbiamo cosiderato, però, l'approccio innovativo delle CRCs. Ad oggi , non è ancora chiaro se tali cellule mimino il profilo dei tessuti oppure I passaggi in vitro modifichino i loro pathways . Sulla base di un modello di topo , i nostri dati mostrano un profilo di proteomica simile tra le linee di cellule e tessuti di topo LCM. In conclusione, i nostri dati dimostrano l'utilità della piattaforma LCM / RPPA nella sperimentazione clinica e la possibilità di creare una bio - banca di linee cellulari primarie, per migliorare la decisione del trattamento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on different aspects of immune regulation, both at the cellular and molecular levels. More specifically, this work concentrates on the importance of Interleukin-10, B and T Lymphocyte Attenuator (BTLA), and dendritic cells in respect to immune regulation, with special emphasis on autoimmunity. In this thesis, we show that the cellular source of IL10 production can dramatically influence the outcome of an autoimmune response. We show that T cell-derived IL10 plays an important role in controlling the viability of recently activated T cells, allowing them to become fully functional T effector cells. T cell-specific IL10-deficient mice failed to induce EAE when immunized with MOG peptide. Furthermore, when re-challenged with MOG or other stimuli, these T cells exhibited increased apoptosis rates. Here we report for the first time the generation of a novel mouse model that allows the conditional over-expression of BTLA. We show that BTLA can negatively regulate CD4+ T cells responses, when expressed by the T cells themselves. BTLA over-expression by CD8+ T cells or dendritic cells, however, resulted in enhanced viral clearance. In this study, we show that depletion of DCs, either early on from birth or later in adulthood, does not prevent EAE induction, but instead leads to a lower state of tolerance and stronger immune response. We also show that DCs are responsible for the upregulation of PD-1 on antigen-specific T cells and subsequently induce the formation of Tregs during immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA damage causes replication errors, leading to genetic instability or cell death. Besides that, many types of DNA base modifications have been shown to interfere with transcriptional elongation if they are located in the transcribed DNA strand of active genes, acting as roadblocks for RNA polymerases. It is widely assumed that transcription blockage by endogenous DNA damage is responsible for the early cell senescence in organs and accelerated ageing observed in individuals with compromised nucleotide excision repair.rnThe aims of this work were to design new experimental systems for testing transcription blocking potentials of DNA base modifications in an individual gene and to apply these test systems to the investigation of the effects of a frequent endogenously generated base modification, namely 8-oxo-7,8-hydroxyguanine (8-oxoG), on the gene transcription in cells. Several experimental strategies were employed for this purpose. First, I constructed an episomal vector encoding for a short-lived EGFP-ODC fusion protein and measured expression of the reporter gene in permanently transfected clonal cell lines exposed to DNA damaging agents. Second, the expression of plasmid-borne EGFP gene damaged with photosensitisers to obtain one or several oxidative purine modifications per plasmid molecule was determined in transiently transfected human and mouse host cells in an approach known as “host cell reactivation”. As a prerequisite for these experiments, a robust method of precise quantitative measurement of the EGFP gene expression in transiently transfected cells by flow cytometry was developed and validated. Third, I elaborated a very efficient procedure for insertion of synthetic oligonucleotides carrying 8-oxoG into plasmid DNA, avoiding any unwanted base damage and strand breaks. The consequences of 8-oxoG placed in defined positions in opposing DNA strands of the EGFP gene for transcription were measured by host cell reactivation in cells with functional 8-oxoguanine DNA glycosylase (OGG1) gene and in OGG1 null cells.rnThe results obtained in Ogg1-/- cells demonstrated that unrepaired 8-oxoG, even if situated in the transcribed DNA strand, does not have any negative effect on the reporter gene transcription. On the other hand, as few as one 8-oxoG was sufficient to cause a significant decrease of the gene expression in OGG1-proficient cell lines, i.e. in the presence of base excision repair. For two analysed positions of 8-oxoG in the plasmid DNA, the inhibition of gene transcription by the base modification correlated with the efficiency of its excision by purified OGG1 protein under cell-free conditions. Based on these findings, it has to be concluded that the observed decrease of transcription is mediated by excision of the base modification by OGG1 and probably caused by the repair-induced single-strand breaks. The mechanism of transcription inhibition by 8-oxoG is therefore clearly distinct from stalling of elongating RNA polymerase II complexes at the modified base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subthreshold resonance is a characteristic membrane property of different neuronal classes, is critically involved in the generation of network oscillations, and tunes the integration of synaptic inputs to particular frequency ranges. In order to investigate whether resonance properties of distinct neuronal populations in the immature neocortex contribute to these network oscillations, I performed whole-cell patch-clamp recordings from visually identified neurons in tangential and coronal neocortical slices from postnatal day (P) P0-P7 C57Bl/6 and P6-P13 GAD67-GFP knock-in mice. Subthreshold resonance was analyzed by sinusoidal current injection of varying frequency. All Cajal-Retzius cells showed subthreshold resonance with an average frequency of 2.6 ± 0.1 Hz (n=60), which was massively reduced by ZD7288, a blocker of hyperpolarization-activated cation currents. About 65.6% (n=61) of the supragranular pyramidal neurons showed subthreshold resonance with an average frequency of 1.4 ± 0.1 Hz (n=40). Application of 1 mM Ni2+ suppressed subthreshold resonance, suggesting that low-threshold Ca2+ currents contribute to resonance in these neurons. About 63.6% (n=77) of the layer V pyramidal neurons showed subthreshold resonance with an average frequency of 1.4 ± 0.2 Hz (n=49), which was abolished by ZD7288. Only 44.1% (n=59) of the subplate neurons showed subthreshold resonance with an average frequency of 1.3 ± 0.2 Hz (n=26) and a small resonance strength. Finally, 50% of the investigated GABAergic interneurons showed subthreshold resonance with an average frequency of 2.0 ± 0.2 Hz (n=42). Membrane hyperpolarization to –86 mV attenuated the frequency and strength of subthreshold resonance. Subthreshold resonance was virtually abolished in the presence of 1 mM Ni2+, suggesting that t-type Ca2+ currents are critically involved in the generation of resonance, while ZD7288 had no effect. Application of 0.4 µM TTX suppressed subthreshold resonance at depolarized, but not hyperpolarized membrane potential, suggesting that persistent Na+ current contribute to the amplification of membrane resonance. rnIn summary, these results demonstrate that all investigated neuronal subpopulations reveal resonance behavior, with either hyperpolarization-activated cation or low-threshold Ca2+ currents contributing to the subthreshold resonance. GABAergic interneurons also express subthreshold resonance at low frequencies, with t-type Ca2+ and persistent Na+ currents underlying the generation of membrane resonance. The membrane resonance of immature neurons may contribute to the generation of slow oscillatory activity pattern in the immature neocortex and enhance the temporal precision of synaptic integration in developing cortical neurons.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD4+ T-Zellen können in verschiedene T-Helferzellsubpopulationen differenzieren. Dabei hängt es von verschiedensten Milieubedingungen ab, welche Subpopulation sich ausprägt, damit die CD4+ T-Zelle durch die Sekretion verschiedenster Zytokine ihre Funktion im Immunsystem wahrnehmen kann.rnBei der Th9-Subpopulation handelt es sich um einen IL-9-produzierenden Phänotyp, welcher sich in der Anwesenheit von TGF-ß und IL-4 entwickelt39. Als treibender Transkriptionsfaktor für diese Subpopulation wurde das Protein IRF4 beschrieben45. Da dieser Transkriptionsfaktor auch für die Differenzierung weiterer Subpopulationen, wie Th2- und Th17-Zellen von Bedeutung ist30,121, stellte sich die Frage, welcher Interaktionspartner von IRF4 darüber entscheidet, welcher Subtyp sich entwickelt. Deshalb wurde in dieser Arbeit der Transkriptionsfaktor NFATc2 als möglicher Interaktionspartner für IRF4 am murinen Il9 Promotor untersucht. Allerdings zeigten Reportergen¬analysen, dass NFATc2 die IL-9-Produktion in Th9-Zellen inhibiert anstatt sie zu fördern. Th9-Zellen aus NFATc2-defizienten Tieren zeigen folglich im Vergleich zu wildtypischen Th9-Zellen sowohl nach Primär- als auch nach Restimulation eine verstärkte IL-9-Produktion. Der Faktor NFATc2 kann somit als transkriptioneller Aktivator für die IL-9-Expression in Th9-Zellen ausgeschlossen werden. In vivo wurden diese Beobachtungen dadurch untermauert, dass NFATc2-defiziente Tiere im Rahmen des Asthma bronchiale zu einer verstärkten pulmonalen Inflammation neigen und auch einen erhöhten Atemwegswiderstand nach Methacholin-Provokation aufweisen. Diese asthmatischen Symptome konnten durch Applikation eines neutralisierenden Antikörpers für IL-9 wesentlich gemildert werden. In einem B16F10-Melanommodell konnten NFATc2-defiziente Tiere gegenüber dem Wildtyp eine verbesserte anti-Tumorantwort ausprägen. Nach Gabe eines IL-9-neutralisierenden Antikörpers, wurde dieser Effekt wiederum gemildert.rnZusammenfassend lässt sich sagen, dass IRF4 nicht mit NFATc2 am murinen Il9 Promotor interagiert, um die IL-9-Expression in Th9-Zellen zu fördern. Eine NFATc2-Defizienz resultiert sogar in einer gesteigerten IL-9-Produktion, womit ein inhibitorischer Einfluss von NFATc2 in Bezug auf die IL-9-Expression in Th9-Zellen nachgewiesen werden konnte.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 15 (IL-15) gilt als eines der vielversprechendsten zukünftigen Medikamente für die Krebstherapie. Es fördert die Proliferation, Persistenz und Funktion von CD8+ T-Zellen und vermittelt zahlreiche Effekte, die es als überlegene Alternative für das derzeit in der Klinik verwendete IL-2 erscheinen lassen. Für den Einsatz von IL-15 in der vorliegenden Arbeit wurde zunächst ein Protokoll zur Herstellung von rekombinantem IL-15 in E. coli etabliert. Das hergestellte Protein hatte eine zu kommerziellen Produkten vergleichbare Bioaktivität und begünstigte die Persistenz und Aktivität antigenspezifischer, humaner CD8+ T Zellen nach adoptivem Transfer in NSG-Mäuse, wobei unter anderem ein verstärkter Effekt auf T Zellen mit TSCM-Phänotyp beobachtet wurde. Um die Bioaktivität von IL-15 zu steigern, wurden super-agonistische IL-15-Fusions¬proteine entworfen und im Expi293-System hergestellt. Dabei wurde IL 15 kovalent mit der Sushi-Domäne, der IL-15Rα-Kette und einer IgG1-Fc-Domäne verbunden, was zu einer gesteigerten Affinität der IL 15-Superagonisten zum physiologischen, niederaffinen IL 15Rβγ und zu einer stark erhöhten Halbwertszeit in Mausserum führte. Die gesteigerte Affinität der IL-15-Super¬agonisten wurde durch die IL 15Rα-Sushi-Domäne vermittelt. Eine um 13 Amino¬säuren verlängerte Sushi-Domäne zeigte im Vergleich zur normalen Form eine nochmals ge¬steigerte Affinität. Die längere Halbwertszeit wurde von der Sushi- und der IgG1-Fc-Domäne vermittelt. Die IgG1-Fc-Domäne verstärkte die Wirkung der Fusionsproteine zusätzlich über einen Mechanismus, der wahrscheinlich mit der Transpräsentation durch Fc Re¬ze¬ptoren zusammen–hängt. Die gesteigerte Bioaktivität der IL-15-Superagonisten wurde im Tiermodell mit humanen und murinen T-Zellen bestätigt und ILR13+-Fc wurde als das Fusionsprotein mit der höchsten Bioaktivität identifiziert. Im Vergleich zu anderen IL-15-Superagonisten vereint es alle derzeit bekannten Eigenschaften zur Bioaktivitätssteigerung in einem einzigen Protein. In therapeutischen Versuchen mit adoptivem Transfer tumorreaktiver T-Zellen konnte der Antitumoreffekt durch ILR13+-Fc maßgeblich verstärkt werden. Als Modellsysteme wurden NSG-Mäuse, die mit humanen AML-Blasten oder einem soliden Ovarialkarzinom engraftet wurden, verwendet. Dabei wurden sowohl antigenspezifische als auch unspezifische Effekte beobachtet. Die unspezifischen Effekte wurden wahrscheinlich durch eine ILR13+-Fc-vermittelte Überexpression von NKG2D, einem Rezeptor der angeborenen Immunantwort, auf den adoptiv transferierten T Zellen vermittelt. Die Ergebnisse dieser Arbeit zeigen, dass IL-15 und die IL-15-Superagonisten die Proliferation und Reaktivität von CD8+ T-Zellen im Rahmen der Immuntherapie fördern können. Aufgrund der hohen Bioaktivität und potenzierten Wirksamkeit, könnten vor allem die IL 15-Superagonisten in Zukunft bei der Entwicklung effizienter Therapiemethoden eingesetzt werden und dadurch einen wichtigen Beitrag zu Behandlung von Krebs leisten. rnrn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capire come modellare l'attività del cervello a riposo, resting state, è il primo passo necessario per avvicinarsi a una reale comprensione della dinamica cerebrale. Sperimentalmente si osserva che, quando il cervello non è soggetto a stimoli esterni, particolari reti di regioni cerebrali presentano un'attività neuronale superiore alla media. Nonostante gli sforzi dei ricercatori, non è ancora chiara la relazione che sussiste tra le connessioni strutturali e le connessioni funzionali del sistema cerebrale a riposo, organizzate nella matrice di connettività funzionale. Recenti studi sperimentali mostrano la natura non stazionaria della connettività funzionale in disaccordo con i modelli in letteratura. Il modello implementato nella presente tesi per simulare l'evoluzione temporale del network permette di riprodurre il comportamento dinamico della connettività funzionale. Per la prima volta in questa tesi, secondo i lavori a noi noti, un modello di resting state è implementato nel cervello di un topo. Poco è noto, infatti, riguardo all'architettura funzionale su larga scala del cervello dei topi, nonostante il largo utilizzo di tale sistema nella modellizzazione dei disturbi neurologici. Le connessioni strutturali utilizzate per definire la topologia della rete neurale sono quelle ottenute dall'Allen Institute for Brain Science. Tale strumento fornisce una straordinaria opportunità per riprodurre simulazioni realistiche, poiché, come affermato nell'articolo che presenta tale lavoro, questo connettoma è il più esauriente disponibile, ad oggi, in ogni specie vertebrata. I parametri liberi del modello sono stati scelti in modo da inizializzare il sistema nel range dinamico ottimale per riprodurre il comportamento dinamico della connettività funzionale. Diverse considerazioni e misure sono state effettuate sul segnale BOLD simulato per meglio comprenderne la natura. L'accordo soddisfacente fra i centri funzionali calcolati nel network cerebrale simulato e quelli ottenuti tramite l'indagine sperimentale di Mechling et al., 2014 comprovano la bontà del modello e dei metodi utilizzati per analizzare il segnale simulato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allograft acceptance and tolerance can be achieved by different approaches including inhibition of effector T cell responses through CD28-dependent costimulatory blockade and induction of peripheral regulatory T cells (Tregs). The observation that Tregs rely upon CD28-dependent signals for development and peripheral expansion, raises the intriguing possibility of a counterproductive consequence of CTLA4-Ig administration on tolerance induction. We have investigated the possible negative effect of CTLA4-Ig on Treg-mediated tolerance induction using a mouse model of single MHC class II-mismatched skin grafts in which long-term acceptance was achieved by short-term administration of IL-2/anti-IL-2 complex. CTLA4-Ig treatment was found to abolish Treg-dependent acceptance in this model, restoring skin allograft rejection and Th1 alloreactivity. CTLA4-Ig inhibited IL-2-driven Treg expansion, and prevented in particular the occurrence of ICOS(+) Tregs endowed with potent suppressive capacities. Restoring CD28 signaling was sufficient to counteract the deleterious effect of CTLA4-Ig on Treg expansion and functionality, in keeping with the hypothesis that costimulatory blockade inhibits Treg expansion and function by limiting the delivery of essential CD28-dependent signals. Inhibition of regulatory T cell function should therefore be taken into account when designing tolerance protocols based on costimulatory blockade. Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to achieve host cell entry, the apicomplexan parasite Neospora caninum relies on the contents of distinct organelles, named micronemes, rhoptries and dense granules, which are secreted at defined timepoints during and after host cell entry. It was shown previously that a vaccine composed of a mixture of three recombinant antigens, corresponding to the two microneme antigens NcMIC1 and NcMIC3 and the rhoptry protein NcROP2, prevented disease and limited cerebral infection and transplacental transmission in mice. In this study, we selected predicted immunogenic domains of each of these proteins and created four different chimeric antigens, with the respective domains incorporated into these chimers in different orders. Following vaccination, mice were challenged intraperitoneally with 2 × 10(6)N. caninum tachzyoites and were then carefully monitored for clinical symptoms during 4 weeks post-infection. Of the four chimeric antigens, only recNcMIC3-1-R provided complete protection against disease with 100% survivors, compared to 40-80% of survivors in the other groups. Serology did not show any clear differences in total IgG, IgG1 and IgG2a levels between the different treatment groups. Vaccination with all four chimeric variants generated an IL-4 biased cytokine expression, which then shifted to an IFN-γ-dominated response following experimental infection. Sera of recNcMIC3-1-R vaccinated mice reacted with each individual recombinant antigen, as well as with three distinct bands in Neospora extracts with similar Mr as NcMIC1, NcMIC3 and NcROP2, and exhibited distinct apical labeling in tachyzoites. These results suggest that recNcMIC3-1-R is an interesting chimeric vaccine candidate and should be followed up in subsequent studies in a fetal infection model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major route of transmission of Neospora caninum in cattle is transplacentally from an infected cow to its progeny. Therefore, a vaccine should be able to prevent both the horizontal transmission from contaminated food or water and the vertical transmission. We have previously shown that a chimeric vaccine composed of predicted immunogenic epitopes of NcMIC3, NcMIC1 and NcROP2 (recNcMIC3-1-R) significantly reduced the cerebral infection in BALB/c mice. In this study, mice were first vaccinated, then mated and pregnant mice were challenged with 2×10(6)N. caninum tachyzoites at day 7-9 of pregnancy. Partial protection was only observed in the mice vaccinated with a tachyzoite crude protein extract but no protection against vertical transmission or cerebral infection in the dams was observed in the group vaccinated with recNcMIC3-1-R. Serological and cytokine analysis showed an overall lower cytokine level in sera associated with a dominant IL-4 expression and high IgG1 titers. Thus, the Th2-type immune response observed in the pregnant mice was not protective against experimental neosporosis, in contrary to the mixed Th1-/Th2-type immune response observed in the non-pregnant mouse model. These results demonstrate that the immunomodulation that occurs during pregnancy was not favorable for the protection against N. caninum infection conferred by vaccination with recNcMIC3-1-R.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intestinal protozoan parasite Giardia lamblia causes diarrhoea in humans and animals. In the present study, we used the C57BL/6 inbred mouse model to assess the impact of a nematode (Trichinella spiralis) infection on the course of a G. lamblia (clone GS/M-83-H7) infection. Acute trichinellosis coincided with transient intestinal inflammation and generated an intestinal environment that strongly promoted growth of G. lamblia trophozoites although the local anti-Giardia immunoglobulin (Ig) A production was not affected. This increased G. lamblia infection intensity correlated with intestinal mast cell infiltration, mast cell degranulation, and total IgE production. Furthermore, a G. lamblia single-infection investigated in parallel also resulted in intestinal mast cell accumulation but severe infiltration was triggered in the absence of IgE. Recently, intestinal mast cells emerging during a G. lamblia infection were reported to be involved in those immunological mechanisms that control intestinal proliferation of the parasite in mice. This anti-giardial activity was assumed to be related to the capacity of mast cells to produce IL-6. However, this previous assumption was questioned by our present immunohistological findings indicating that murine intestinal mast cells, activated during a G. lamblia infection were IL-6-negative. In the present co-infection experiments, mast cells induced during acute trichinellosis were not able to control a concurrent G. lamblia infection. This observation makes it feasible that the T. spiralis infection created an immunological and physiological environment that superimposed the anti-giardial effect of mast cells and thus favoured intestinal growth of G. lamblia trophozoites in double-infected mice. Furthermore, our findings raise the possibility that intestinal inflammation e.g. as a consequence of a 'pre-existing' nematode infection is a factor which contributes to increased susceptibility of a host to a G. lamblia infection. The phenomenon of a 'pre-existing' nematode infection prior to a G. lamblia infection is a frequent constellation in endemic areas of giardiasis and may therefore have a direct impact on the epidemiological situation of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilizing both the TET-OFF and TET-ON systems in combination with transcriptional control elements of the Tie-2 gene, we have established a series of transgenic activator and responder mice for TET-regulated endothelial cell-specific transgene expression in double transgenic mouse embryos and in adult mice. TET-regulated expression of LacZ reporter genes could be achieved in virtually all endothelia in mid gestation stage mouse embryos. In contrast in adult mice, using the very same Tie-2 tTA activator mouse strain, we observed striking differences of TET-induced gene expression from various inducible expression constructs in different vascular beds. Non-endothelial expression was never detected. The prominent differences in completeness of TET-induced endothelial expression highlight the still underestimated critical role of the responder mouse lines for uniform TET-induced gene expression in heterogeneous cell populations such as endothelial cells. Interestingly, in double transgenic mice inducibly expressing several different adhesion molecules, no adverse effects were observed even though these proteins were robustly expressed on endothelial cells in adult tissues. These transgenic model systems provide versatile tools for the TET-regulated manipulation of endothelial cell-specific gene expression in the entire embryonic vasculature and distinct vascular beds in adult mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proinflammatory cytokine IL-6 seems to have an important role in the intestinal inflammation that characterizes inflammatory bowel diseases (IBDs) such as Crohn disease and ulcerative colitis. However, little is known about the molecular mechanisms regulating IL-6 production in IBD. Here, we assessed the role of the transcriptional regulator IFN regulatory factor-4 (IRF4) in this process. Patients with either Crohn disease or ulcerative colitis exhibited increased IRF4 expression in lamina propria CD3+ T cells as compared with control patients. Consistent with IRF4 having a regulatory function in T cells, in a mouse model of IBD whereby colitis is induced in RAG-deficient mice by transplantation with CD4+CD45RB(hi) T cells, adoptive transfer of wild-type but not IRF4-deficient T cells resulted in severe colitis. Furthermore, IRF4-deficient mice were protected from T cell-dependent chronic intestinal inflammation in trinitrobenzene sulfonic acid- and oxazolone-induced colitis. In addition, IRF4-deficient mice with induced colitis had reduced mucosal IL-6 production, and IRF4 was required for IL-6 production by mucosal CD90+ T cells, which it protected from apoptosis. Finally, the protective effect of IRF4 deficiency could be abrogated by systemic administration of either recombinant IL-6 or a combination of soluble IL-6 receptor (sIL-6R) plus IL-6 (hyper-IL-6). Taken together, our data identify IRF4 as a key regulator of mucosal IL-6 production in T cell-dependent experimental colitis and suggest that IRF4 might provide a therapeutic target for IBDs.