651 resultados para Hydrokinetic turbines
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction, the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss." This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2014 by ASME.
Resumo:
Offshore wind turbines impose unique combinations of loads on their foundations. They impose large lateral loads in relation to vertical loading which must be resisted, but are also subject to approximately a million cycles of loading through their design life. As the performance of these systems is dominated by their dynamic response, the stiffness of the foundations becomes critical in design. Conventional design codes which are conservative by virtue of predicting a lower stiffness than might be observed in practice may not be conservative for these problems. By utilizing centrifuge modeling the behaviour of monopile foundations in both sands and clays under cyclic loading can be investigated in order to predict the dynamic behaviour of these systems. © 2010 Taylor & Francis Group, London.
Resumo:
This paper studies the converter rating requirement of a Brushless Doubly-Fed Induction Generator for wind turbine applications by considering practical constraints such as generator torque-speed requirement, reactive power management and grid low-voltage ride-through (LVRT). Practical data have been used to obtain a realistic system model of a Brushless DFIG wind turbine using steady-state and dynamic models. A converter rating optimization is performed based on the given constraints. The converter current and voltage requirements are examined and the resulting inverter rating is compared to optimization algorithm results. In addition, the effects of rotor leakage inductance on LVRT performance and hence converter rating is investigated.
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.
Resumo:
The complex three-dimensional two-phase flow in a low pressure steam turbine is investigated with comprehensive numerical flow simulations. In addition to the condensation process, which already takes place in the last stages of steam turbines, the numerical flow model is enhanced to consider the drag forces between the droplets and the vapour phase. The present paper shows the differences in the flow path of the phases and investigates the effect of an increasing droplet diameter. For the flow simulations a performance cluster is used because of the high effort for such multi-momentum two-phase flow calculations. In steam turbines the deposition of small water droplets on the stator blades or on parts of the casing is responsible for the formation of large coarse water droplets and these may cause additional dissipation as well as damage due to blade erosion. A method is presented that uses detailed CFD data to predict droplet deposition on turbine stator blades. This simulation method to detect regions of droplet deposition can help to improve the design of water removal devices. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors ( 1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high-performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteorological environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.
Resumo:
Offshore wind turbines supported on monopile foundations are dynamically sensitive because the overall natural frequencies of these structures are close to the different forcing frequencies imposed upon them. The structures are designed for an intended life of 25 to 30 years, but little is known about their long term behaviour. To study their long term behaviour, a series of laboratory tests were conducted in which a scaled model wind turbine supported on a monopile in kaolin clay was subjected to between 32,000 and 172,000 cycles of horizontal loading and the changes in natural frequency and damping of the model were monitored. The experimental results are presented using a non-dimensional framework based on an interpretation of the governing mechanics. The change in natural frequency was found to be strongly dependent on the shear strain level in the soil next to the pile. Practical guidance for choosing the diameter of monopile is suggested based on element test results using the concept of volumetric threshold shear strain.
Resumo:
Life around the Turbines is an outreach project developed by the Marine Biological Association of the UK (MBA) funded by COWRIE (Collaborative Offshore Wind Research into the Environment). The project was designed to promote the need for renewable energy, raise awareness of marine biodiversity and generate discussions about offshore wind farms particularly with school children around Great Britain. The project has run from 2008 – 2014 and has involved workshops with schools all around Great Britain; production of online resources and a series of training events and tools for marine educators. All of the resources and workshops were developed to correlate with the national curricula for England, Scotland and Wales and cover a range of topics including science, citizenship and technology. Combining charismatic marine wildlife with technology and interactive, hands-on workshop activities has proved a successful and popular combination, received well by students and teachers. We present the methods of engagement used and some of the information received through a basic activity evaluation process. We will also share information about how conference participants can obtain and utilise free resources to support their own outreach and teaching at www.mba.ac.uk/education.
A Numerical Analysis of the Flow Fields and Losses in Vaned and Vaneless Stators for Radial Turbines
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency pulsations contained within active power flow. A primary concern is excitation of low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of interconnection between the Northern and Southern power system networks. In order to determine whether the prevalence of wind generation has a negative effect (excites modes) or positive impact (damping of modes) on the power system, oscillations must be measured and characterised. Using time – frequency methods, this paper presents work that has been conducted to extract features from low-frequency active power pulsations to determine the composition of oscillatory modes which may impact on dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.