973 resultados para Hydrogen bond lengths


Relevância:

80.00% 80.00%

Publicador:

Resumo:

C11H11N3O4 , Mr = 249.23, triclinic, , a = 5.453(1), b = 22.873(5), c = 4.893(1) Å, a = 94.47(3), b = 96.36(3), g = 86.27(3)º, V = 603.7(8)ų,Z = 2, Dx = 1.371 Mg/m-3,l(Cu Ka1) = 1.54178Å, m = 0.86mm-1, room temperature. The crystal structure of N-isopropyl-2-cyano-3(5'-nitrofuryl) - acrylamide has been determined by Direct Methods and refined to R = 0.086 for 797 observed reflections. The molecules in the crystal are packed at normal van der Waals forces and by an hydrogen bond between N1-H1...02i (N1...02i: 2.910(1)Å), with i=x,y,z+1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this contribution a few new gold(I)phosphine complexes, [2-(PPh2)C6H4CO 2H]AuX (where X = Cl, SCN, Br3) and a similar gold(III) derivative [{2-(PPh2)C6H4CO 2H}AuIII Cl (C6H4CH2NMe2 )]Cl have been synthesised and characterised. The phosphine, 2-(diphenylphosphino)benzoic acid, has been employed for the first time in gold chemistry. This ligand is potentially bidentate through bonding of the phosphine and carboxylate groups. The X-ray structure of the complex chloro[2-(diphenylphosphino) benzoic acid]gold(I) has been elucidated and the bond lengths encountered show great similarity to those of chloro(triphenylphosphine)gold(I). [2-(PPh2)C6H4CO 2H]AuCl crystallises in the space group P2(1)/c with a = 9.113(2) Å, b = 10.925(2) Å, c = 23.069(4) Å, beta = 99.95º(3), V = 2299 ų, Z = 4 and R = 0.091. Biological tests for anti-fungal and anti-bacterial activity demostrate that [2-(PPh2)C6H4CO 2H]AuCl exhibits broad spectrum activity against a range of organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ab initio Hartree-Fock (HF), Density Functional (B3LYP) and electron correlation (MP2) methods have been used to caracterize the aqueous medium intramolecular hydrogen bond in a-alanine. The 6-31G* and 6-31++G** were taken from Gaussian94 library. We were concerned on the structure of three conformers of a-alanine, in their neutral form plus on the structure of the zwitterionic form (Z). The Z structure is a stationary point at the HF/6-31G* level but it is not when diffuse functions and electron correlation are included. This results shows that the Z form does not exist in the gas phase. The inclusion of solvent effects changed significantly the results obtained in gas phase, therefore this inclusion make the Z form a stationary point within all level of theory, and the relative energy depends dramatically on the level of calculation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A very short-strong hydrogen bond (<2 Å, >20kcal/mol) is found in the monoanion of certain dicarboxylic acids derived from maleic and dialkylmalonic acids. Certain aromatic diamines that are known as proton sponge have exceptionally high basicity (pKa) and are only monoprotonated with strong acids like percloric acid. The closed proximity between the two basic centers provokes a strong steric interaction that is relieved upon protonation. Similar effects are found in dicarboxylic acids (hydrogen maleate and hydrogen dialkylmalonates) that present a very short distance between the two oxygens and a short-strong hydrogen bond.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two ortho-iodoallyloxybenzoates, methyl 4-O-allyl-2,3-di-O-benzyl-6-O-(2-iodobenzoyl)- alpha-D-glucopyranoside (3) and methyl 4-O-allyl-2,3-di-O-benzyl-6-O-(2-iodobenzoyl)- alpha-D-galactopyranoside (4) were synthesized in seven conventional steps from methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside, respectively. Bu3SnH-mediated aryl radical cyclization of 3 provided exclusively the hydrogenolysis product 12. The reaction of 4 gave the reduced uncyclized product 13 and only traces of 4A, resulting from 11-endo aryl radical cyclization. In previous papers we described that in similar Bu3SnH-mediated radical reaction of ortho-iodoallyloxybenzamides, analogs of 3 and 4, we obtained macrolactams resulting from 11-endo cyclization. An hypothesis to explain the differences is presented. It was assumed that in the aryl radical formed from iodobenzamides there is a suitable conformation to cyclization, which is stabilized by an intramolecular hydrogen bond.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The encapsulation of metal clusters in endohedral metallofullerenes (EMFs) takes place in cages that in most cases are far from being the most stable isomer in the corresponding hollow fullerenes. There exist several possible explanations for the choice of the hosting cages in EMFs, although the final reasons are actually not totally well understood. Moreover, the reactivity and regioselectivity of (endohedral metallo)fullerenes have in the past decade been shown to be generally dependent on a number of factors, such as the size of the fullerene cage, the type of cluster that is being encapsulated, and the number of electrons that are transferred formally from the cluster to the fullerene cage. Different rationalizations of the observed trends had been proposed, based on bond lengths, pyramidalization angles, shape and energies of (un)occupied orbitals, deformation energies of the cages, or separation distances between the pentagon rings. Recently, in our group we proposed that the quest for the maximum aromaticity (maximum aromaticity criterion) determines the most suitable hosting carbon cage for a given metallic cluster (i.e. EMF stabilization), including those cases where the IPR rule is not fulfilled. Moreover, we suggested that local aromaticity plays a determining role in the reactivity of EMFs, which can be used as a criterion for understanding and predicting the regioselectivity of different reactions such as Diels-Alder cycloadditions or Bingel-Hirsch reactions. This review highlights different aspects of the aromaticity of fullerenes and EMFs, starting from how this can be measured and ending by how it can be used to rationalize and predict their molecular structure and reactivity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of substituents on the energies and geometries of 3-hydroxypropenal was studied using the B3LYP/6-311++G(d,p) model. The hydrogen bond energies indicate that the strongest donors and the weakest acceptors present the highest and the weakest hydrogen bonds, respectively, indicating the validity of the Madsen RAHB model. Geometric parameters indicate that the intensity of the hydrogen bond is proportional to the resonance, as suggested by the RHAB model. The effect of substituents diverges from the model proposed by Gilli et al. Sometimes the results indicate that the donor or acceptor effect is more important than the point of substitution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The properties of water can have a strong dependence on the confinement. Here, we consider a water monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the properties of the liquid are affected by the confinement. We show, by studying the response functions and the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the liquid-liquid critical point for L/h=~50, i.e. for a monolayer thickness that is small compared to its extension. This result is drastically different from what is reported for simple liquids, where the crossover occurs for , and is consistent with experimental results and atomistic simulations. We shed light on these findings showing that they are a consequence of the strong cooperativity and the low coordination number of the hydrogen bond network that characterizes water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen-bonded complexes formed by the interaction of the heterocyclic molecules C2H4O and C2H5N with HF, HCN, HNC and C2H2 have been studied using density functional theory. The hydrogen bond strength has been analyzed through electron density charge transfer from the proton acceptor to the proton donor. The density charge transfer has been estimated using different methods such as Mulliken population analysis, CHELPG, GAPT and AIM. It has been shown that AIM-estimated charge transfer correlates very well with the hydrogen bond energy and the infrared bathochromic effect of the proton donor stretching frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

B3LYP/6-31G(d,p) calculations were used to determine the optimized geometries of the C2H4O-C2H2 and C2H4S-C2H2 heterocyclic hydrogen-bonded complexes. Results of structural, rotational, electronic and vibrational parameters indicate that the hydrogen bonding is non-linear due to the pi bond of the acetylene interacting with the hydrogen atoms of the methyl groups of the three-membered rings. Moreover, the theoretical investigation showed that the non-linearity is much more intriguing, since there is a structural disjunction on the acetylene within the heterocyclic system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents three operationally simple laboratory protocols for monocrystal growth of small-molecule organic compounds, which have been applied with success in the last ten years for the formation of single crystals for X-ray structural studies. In addition, five structure hints were formulated as general guidelines for selecting a small-molecule organic compound as a candidate for monocrystal growth: molecular weight >200 D, melting point >100 ºC, two or more aromatic rings in the structure, at least two sites for intermolecular hydrogen bond formation, and a halogen or other heavy atom in the structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum chemical calculations were performed in order to obtain molecular properties such as electronic density, dipole moment, atomic charges, and bond lengths, which were compared to qualitative results based on the theories of the organic chemistry. The quantum chemistry computational can be a useful tool to support the main theories of the organic chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen bond energies of fifteen dimers were calculated using the large basis set 6-311++G(3df,3pd), at Hartree-Fock (HF) level including Møller-Plesset (MP2) calculations. The procedure for obtaining such energies were based on the dimer's energy rise provoked by increasing in intermolecular distance of the system component units. Deviations from a strictly linear hydrogen bond were investigated and rotational barriers were also computed allowing the calculation of the second order attractive interactions. In order to provide a more objective definition of hydrogen bond, a lower energy limit was proposed in place of the merely empirical parameters employed in the classical definition

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The triterpenoids oleanolic (OA) and ursolic (UA) acids show non-selective antiinflamatory activity in vitro for cyclooxygenase (COX) isoforms. 3D conformations of OA and UA, with three possible orientations (1, 1' and 2) in the active site of isoforms COX, obtained by docking, were submitted to molecular dynamics. The results show that orientation 2 of the OA in COX-2 is more favorable because orientation 1 moved away from the active site. The carboxylate group of OA interact by hydrogen bonds with Ser353 and with Phe357 and Leu359, mediated by water, while hydroxyl in C-3 interact by hydrogen bond, mediated by water, with Tyr385.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(E)-2-{[(2-Aminopyridin-3-yl)imino]-methyl}-4,6-di-tert-butyl-phenol ( 3: ), a ligand containing an intramolecular hydrogen bond, was prepared according to a previous literature report, with modifications, and was characterized by UV-vis, FTIR, ¹H-NMR, 13C-NMR, HHCOSY, TOCSY and cyclic voltammetry. Computational analyses at the level of DFT and TD-DFT were performed to study its electronic and molecular structures. The results of these analyses elucidated the behaviors of the UV-vis and electrochemical data. Analysis of the transitions in the computed spectrum showed that the most important band is primarily composed of a HOMO→LUMO transition, designated as an intraligand (IL) charge transfer.