829 resultados para Hydrate pockmark


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toluene dioxygenase-catalysed cis-dihydroxylation of phenols has led to the discovery of new enantiopure cyclohexenone cis-diol, o-quinol dimer and phenol hydrate metabolites having synthetic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine pockmarks are a specific type of seabed geological setting resembling craters or pits and are considered seabed surface expressions of fluid flow in the subsurface. A large composite pockmark on the Malin Shelf, off the northern coast of Ireland was surveyed and ground truthed to assess its activity and investigate fluid related processes in the subsurface. Geophysical (including acoustic and electromagnetic) data confirmed the subsurface presence of signatures typical of fluids within the sediment. Shallow seismic profiling revealed a large shallow gas pocket and typical gas related indicators such as acoustic blanking and enhanced reflectors present underneath and around the large pockmark. Sulphate profiles indicate that gas from the shallow reservoir has been migrating upwards, at least recently. However, there are no chimney structures observed in the sub-bottom data and the migration pathways are not apparent. Electromagnetic data show slightly elevated electrical conductivity on the edges of the pockmarks and a drop below regional levels within the confines of the pockmark, suggesting changes in physical properties of the sediment. Nuclear Magnetic Resonance (NMR) experiments were employed to characterize the organic component of sediments from selected depths. Very strong microbial signatures were evident in all NMR spectra but microbes outside the pockmark appear to be much more active than inside. These observations coincide with spikes in conductivity and the lateral gas bearing body suggesting that there is an increase in microbial activity and biomass when gas is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasound promotes the reduction of hexacyanoferrate(III) by thiosulfate ions mediated by RuO2 . xH(2)O under diffusion-controlled conditions. There is a strong correlation between the measured first-order rate constant and the absorbance of the dispersion, which, in turn, is closely related to the specific surface area of the catalyst. The enhancement in rate with ultrasonic irradiation appears to be largely associated with the dispersive action of the ultrasound on the aggregated particles of RuO2 . xH(2)O. The rate of reaction increases with increasing %duty cycle and ultrasonic intensity. The measured overall activation energies for the reaction with and without ultrasound, i.e. 18 +/- 1 and 20 +/- 1 kJ mol(-1), respectively, are very similar to those expected for a diffusion-controlled reaction. The homogeneous reaction is not promoted by ultrasound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of reduction of hexacyanoferrate(III) by excess thiosulfate, mediated by RuO2.xH2O, are investigated. At high concentrations of S2O32- (0.1 mol dm-3) the kinetics of Fe(CN)63- reduction are first order with respect to [Fe(CN)63-] and [RuO2.xH2O] and independent of [Fe(CN)64-], [S2O32-] and [S4O62-]. At relatively low concentrations Of S2O32- (0.01 mol dm-3) and in the presence of appreciable concentrations of Fe(CN)64- and S4O62- (0.01 mol dm-3) the kinetics depend directly upon [Fe(CN)63-] and [RuO2.xH2O] and inversely upon [Fe(CN)64-]. Both sets of kinetics can be rationalised using an electrochemical model of redox catalysts in which a reversible reduction reaction [Fe(CN)63- + e- --> Fe(CN)64-] is coupled to an irreversible oxidation reaction (s2O32- - e- --> 1/2S4O62-), by a dispersion of RuO2.xH2O microelectrodes. At high concentrations Of S2O32- this model predicts that the kinetics of Fe(CN)63- reduction are controlled by the rate of diffusion of the Fe(CN)63- ions to the RuO2.xH2O particles. The kinetics observed at low concentrations of S2O32- are predicted by the electrochemical model, assuming that the Tafel slope for the oxidation Of S2O32- to S4O62- on the RuO2.xH2O particles is 56.4 mV decade-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a kinetic study of the oxidative dissolution of ruthenium dioxide hydrate to ruthenium tetroxide by periodate ions, IO4-, in acidic solution are described. The kinetics of dissolution give a good fit to a 'soft-centre' model in which the particles of RuO2.xH2O are assumed to be monodispersed, spherical but inhomogeneous in composition, comprising a difficult-to-corrode outer shell and a more easy-to-corrode inner core. In this work metaperiodate appears to act as a two-electron oxidant. The observed kinetics fit a reaction scheme in which the rate-determining step is the reaction between a surface site and an adsorbed IO4 ion and there is competitive adsorption by any IO3- present. In the absence and presence of an excess of IO3- ions, the overall activation energy for the corrosion reaction was determined to be 38 +/- 2 and 54 +/- 4 kJ mol-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of oxidation of water to oxygen by MnO4-, mediated by thermally activated ruthenium dioxide hydrate, has been studied. The rate of catalysis is 0.8 order with respect to the surface concentration of MnO4- (which in turn appears to fit a Langmuir adsorption isotherm) and proportional to the catalyst concentration, but is independent of the concentration of manganese(II) ions. The catalysed reaction appears to have an activation energy of 50 +/- 1 kJ mol-1. These observed kinetics are readily rationalised using an electrochemical model in which the catalyst particles act as microelectrodes providing a medium for electron transfer between the highly irreversible oxidation of water to O2 and the highly irreversible reduction of MnO4- to Mn2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of oxidative dissolution of RuO2 .xH2O to RuO4 by Ce(iv) ions are studied. Under conditions of a low [Ce(iv)] : [RuO2 .xH2O] ratio (e.g. 0.35 : 1) and a high background concentration of Ce(III) ions (which impede dissolution) the initial reduction of Ce(iv) ions is due to charging of the RuO2 .xH2O microelectrode particles. The initial rate of charging depends directly upon [RuO2 .xH2O] and has an activation energy of 25 +/- 5 kJ mol-1 Under conditions of a high [Ce(iv] : [RuO2 .xH2O] (e.g. 9 : 1) and a low background [Ce(III] the reduction of Ce(iv) ions is almost totally associated with the dissolution of RuO2 .xH2O to RuO4, i.e. not charging. The kinetics of dissolution obey an electrochemical model in which the reduction of Ce(iv) ions and the oxidation of RuO2 .xH2O to RuO4 are assumed to be highly reversible and irreversible processes, respectively, mediated by dissolving the microelectrode particles of RuO2 .xH2O. Assuming this electrochemical model, from an analysis of the kinetics of dissolution the activation energy for this process was estimated to be 39 +/- 5 kJ mol-1 and the Tafel slope for RuO2 .xH2O corrosion was calculated to be 15 mV per decade. The mechanistic implications of these results are discussed.