819 resultados para Hybrid clustering algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper investigates train scheduling problems when prioritised trains and non-prioritised trains are simultaneously traversed in a single-line rail network. In this case, no-wait conditions arise because the prioritised trains such as express passenger trains should traverse continuously without any interruption. In comparison, non-prioritised trains such as freight trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available, which is thought of as a relaxation of no-wait conditions. With thorough analysis of the structural properties of the No-Wait Blocking Parallel-Machine Job-Shop-Scheduling (NWBPMJSS) problem that is originated in this research, an innovative generic constructive algorithm (called NWBPMJSS_Liu-Kozan) is proposed to construct the feasible train timetable in terms of a given order of trains. In particular, the proposed NWBPMJSS_Liu-Kozan constructive algorithm comprises several recursively-used sub-algorithms (i.e. Best-Starting-Time-Determination Procedure, Blocking-Time-Determination Procedure, Conflict-Checking Procedure, Conflict-Eliminating Procedure, Tune-up Procedure and Fine-tune Procedure) to guarantee feasibility by satisfying the blocking, no-wait, deadlock-free and conflict-free constraints. A two-stage hybrid heuristic algorithm (NWBPMJSS_Liu-Kozan-BIH) is developed by combining the NWBPMJSS_Liu-Kozan constructive algorithm and the Best-Insertion-Heuristic (BIH) algorithm to find the preferable train schedule in an efficient and economical way. Extensive computational experiments show that the proposed methodology is promising because it can be applied as a standard and fundamental toolbox for identifying, analysing, modelling and solving real-world scheduling problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This technical report describes the methods used to obtain a list of acoustic indices that are used to characterise the structure and distribution of acoustic energy in recordings of the natural environment. In particular it describes methods for noise reduction from recordings of the environment and a fast clustering algorithm used to estimate the spectral richness of long recordings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell transition data is obtained from a cellular phone that switches its current serving cell tower. The data consists of a sequence of transition events, which are pairs of cell identifiers and transition times. The focus of this thesis is applying data mining methods to such data, developing new algorithms, and extracting knowledge that will be a solid foundation on which to build location-aware applications. In addition to a thorough exploration of the features of the data, the tools and methods developed in this thesis provide solutions to three distinct research problems. First, we develop clustering algorithms that produce a reliable mapping between cell transitions and physical locations observed by users of mobile devices. The main clustering algorithm operates in online fashion, and we consider also a number of offline clustering methods for comparison. Second, we define the concept of significant locations, known as bases, and give an online algorithm for determining them. Finally, we consider the task of predicting the movement of the user, based on historical data. We develop a prediction algorithm that considers paths of movement in their entirety, instead of just the most recent movement history. All of the presented methods are evaluated with a significant body of real cell transition data, collected from about one hundred different individuals. The algorithms developed in this thesis are designed to be implemented on a mobile device, and require no extra hardware sensors or network infrastructure. By not relying on external services and keeping the user information as much as possible on the user s own personal device, we avoid privacy issues and let the users control the disclosure of their location information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising technology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of the approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labeling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means. The outcome of this approach is a soft K-means algorithm similar to the EM algorithm for Gaussian mixture models. The results show the algorithm delivers decision boundaries that consistently classify the field into three clusters, one for each crop health level. The methodology presented in this paper represents a venue for further research towards automated crop damage assessments and biosecurity surveillance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary form only given. A scheme for code compression that has a fast decompression algorithm, which can be implemented using simple hardware, is proposed. The effectiveness of the scheme on the TMS320C62x architecture that includes the overheads of a line address table (LAT) is evaluated and obtained compression rates ranging from 70% to 80%. Two schemes for decompression are proposed. The basic idea underlying the scheme is a simple clustering algorithm that partially maps a block of instructions into a set of clusters. The clustering algorithm is a greedy algorithm based on the frequency of occurrence of various instructions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a new method of color text localization from generic scene images containing text of different scripts and with arbitrary orientations. A representative set of colors is first identified using the edge information to initiate an unsupervised clustering algorithm. Text components are identified from each color layer using a combination of a support vector machine and a neural network classifier trained on a set of low-level features derived from the geometric, boundary, stroke and gradient information. Experiments on camera-captured images that contain variable fonts, size, color, irregular layout, non-uniform illumination and multiple scripts illustrate the robustness of the method. The proposed method yields precision and recall of 0.8 and 0.86 respectively on a database of 100 images. The method is also compared with others in the literature using the ICDAR 2003 robust reading competition dataset.