194 resultados para Hurricanes.
Resumo:
The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and d18O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.
Resumo:
The Santa Irene flood, at the end of October 1982, is one of the most dramatically and widely reported flood events in Spain. Its renown is mainly attributable to the collapse of the Tous dam, but its main message is to be the paradigm of the incidence of the maritime/littoral weather and its temporal sea-level rise on the coastal plains inland floods. The Santa Irene flood was attributable to a meteorological phenomenon known as gota fría (cold drop), a relatively frequent and intense rainy phenomenon on the Iberian Peninsula, particularly on the Spanish E to SE inlands and coasts. There are some circumstances that can easily come together to unleash the cold drop there: cold and dry polar air masses coming onto the whole Iberian Peninsula and the north of Africa, high sea-water temperatures, and low atmospheric pressure (cyclone) areas in the western Mediterranean basin; these circumstances are quite common during the autumn and, as it happens, in other places around the world (E/SE Africa). Their occurrence, however, shows a great space-temporal variability (in a similar way to hurricanes on Caribbean and western North Atlantic areas or also in a similar way to typhoons). In fact, all of these are equivalent, although different, phenomena, able to have a different magnitude each time. This paper describes the results of a detailed analysis and reflection about this cold drop phenomenon as a whole, on the generation of its rains, and on the different natures and consequences of its flood. This paper also explains the ways in which the nearby maritime weather and the consequential sea level govern floods on different zones of any hydrographical basin. The Santa Irene case can be considered as a paradigm to explain the influence of nearby maritime climatic conditions on flooding phenomena not only in coastal but also in upward inland areas.
Resumo:
La gestión de riesgo, es un mecanismo de protección, que mediante la identificación anticipada de las acciones generadas por un evento catastrófico, ayuda a reducir de la vulnerabilidad y a identificar las medidas a tomarse para evitar o mitigar los impactos de estos eventos o desastres. A sabiendas de que la seguridad absoluta no existe, surge la necesidad de que las construcciones de hoy día deben ser adaptadas en función de las características de su entorno y los peligros que se presentan en el mismo. La sociedad moderna identifica su exposición al riesgo y exige que estos sean tratados de manera adecuada garantizando que la obra no suponga ningún tipo de amenaza. Este Trabajo de Fin de Máster está guiado a la identificación de aquellas acciones e influencias que representan un peligro para las estructuras de la República Dominicana por el paso de los huracanes. Con esta información será posible la creación de un catálogo de Riesgos y Soluciones, cuya finalidad sea reducir la exposición y vulnerabilidad de las construcciones frente a un evento catastrófico como lo es paso de un huracán. Para realizar la investigación se ha utilizado el “Método LOGRO”, el cual trabaja bajo tres distintos métodos de investigación, los cuales son la: La revisión de documentación, una sesión de tormenta de ideas y encuestas a expertos (Método Delphi). Ya realizada la investigación e identificados los riesgos, se han realizado una serie de catálogos de Riesgos y Soluciones, que faciliten la creación de un plan de gestión de riesgos, para garantizar un diseño estructural resiliente, en las zonas expuestas al paso de los huracanes en la República Dominicana. Risk management is a protective mechanism, which by the early identification of actions generated by a catastrophic event, helps reduce vulnerability and to identify the measures taken to prevent or mitigate the impacts of these events or disasters. Knowing that there is no absolute security, there is the need for the construction of today must be adapted according to the characteristics of their environment and the dangers presented herein. Modern society identifies their exposure to risk and requires that these are adequately addressed by ensuring that the work does not pose any threat. This Final Project Master is guided to the identification of those actions and influences that pose a threat to the structures of the Dominican Republic by the hurricanes. With this information it is possible to create a catalog of risks, and solutions aimed at reducing the exposure and vulnerability of the buildings facing a catastrophic event as it is a hurricane. To make research has used the "LOGRO method", which works low three different research methods, which include: The review of documentation, a session of brainstorming and expert surveys (Delphi method). And conducted research and identified the risks, there have been a number of catalogs and Risk Solutions that facilitate the creation of a risk management plan to ensure a structural design resilient in areas prone to hurricanes in the Dominican Republic
Resumo:
Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science.
Resumo:
This report summarizes the impact of Hurricane Allen (August 1980) on dune configuration, sand accretion or erosion, and changes in the vegetation on north Padre Island. Four experimental foredunes, the result of grass plantings from 1969 to 1973, and an unplanted control section were monitored in 1975-1977 and also in 1981. The 1981 posthurricane data were compared where possilbe, with the previous studies. Foredune elevation surveys were completed in March 1981; accompanying vegetation transects were made in July 1981. Hurrican Allen causes erosion of the dune face of all the experimental dunes, but caused a breach in only one dune. The beach elevations had returned to approximately prehurricane heights by the time the area was resurveyed. The unplanted control dune provided little resistance to waves generated by the storm and a large quantity of sand was deposited inland.
Resumo:
"August 1976."
Resumo:
At head of title: Coastal Field Data Collection Program.
Resumo:
"November 1990."
Resumo:
"February 1969."
Resumo:
"May 1971."
Resumo:
"October 1975."
Resumo:
"May 1975."
Resumo:
"July 1976."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.