964 resultados para Human-melanoma Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study has been to characterize adult human somatic periodontium-derived stem cells (PDSCS) isolated from human periodontium and to follow their differentiation after cell culture. PDSCS were isolated from human periodontal tissue and cultured as spheres in serum-free medium. After 10 days the primary spheres were dissociated and the secondary spheres sub-cultured for another 1-2 weeks. Cells from different time points were analyzed, and immunohistochemical and electron microscopic investigations carried out. Histological analysis showed differentiation of spheres deriving from the PDSCS with central production of extracellular matrix beginning 3 days after sub-culturing. Isolated PDSCS developed pseudopodia which contained actin. Tubulin was found in the central portion of the cells. Pseudopodia between different cells anastomosed, indicating intercellular transport. Immunostaining for osteopontin demonstrated a positive reaction in primary spheres and within extracellular matrix vesicles after sub-culturing. In cell culture under serum-free conditions human PDSCS form spheres which are capable of producing extracellular matrix. Further investigations have do be carried out to investigate the capability of these cells to differentiate into osteogenic progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common cold is one of the most frequent human inflammatory diseases caused by viruses and can facilitate bacterial super-infections resulting in sinusitis or pneumonia. The active ingredient of the drug Soledum, 1,8-cineole, is commonly applied for treating inflammatory diseases of the respiratory tract. However, the potential of 1,8-cineole for treating primary viral infections of the respiratory tract remains unclear. In the present study, we demonstrate for the first time that 1,8-cineole potentiates Poly(I:C)-induced activity of the anti-viral transcription factor Interferon Regulatory Factor 3, while simultaneously reducing pro-inflammatory NF-κB-activity in human cell lines, inferior turbinate stem cells (ITSCs) and ex vivo cultivated human nasal mucosa. Co-treatment of cell lines with Poly(I:C) and 1,8-cineole resulted in significantly increased IRF3 reporter gene activity compared to Poly(I:C) alone, whereas NF-κB-activity was reduced. Accordingly, 1,8-cineole- and Poly(I:C)-treatment led to increased nuclear translocation of IRF3 in ITSCs and a human ex vivo model of rhinosinusitis compared to the Poly(I:C)-treated approach. Nuclear translocation of IRF3 was significantly increased in ITSCs and slice cultures treated with LPS and 1,8-cineole compared to the LPS-treated cells mimicking bacterial infection. Our findings strongly suggest that 1,8-cineole potentiates the antiviral activity of IRF3 in addition to its inhibitory effect on pro-inflammatory NF-κB-signalling and may thus broaden its field of application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that It sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct Importance of DNA repair is hard to access. Here, it is shown that the Induction of photoproducts by UV light (UV-C) significantly Induces apoptosis In a p53-mutated glioma background. This Is caused by a reduced level of photoproduct repair, resulting In the persistence of DNA lesions in p53-mutated glioma cells. UV-C-Induced apoptosis in p53 mutant glioma cells Is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results Indicate that UV-C-induced apoptosis of p53 mutant glioma cells Is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data Indicate that unrepaired DNA lesions Induce apoptosis In p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that Induce the formation of DNA lesions whose global genomic repair is dependent on p53. (Mol Cancer Res 2009;7(2):237-46)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantation of pancreatic islets isolated from organ donors constitutes a promising alternative treatment for type 1 diabetes, however, it is severely limited by the shortage of organ donors. Ex vivo islet cell cultures appear as an attractive but still elusive approach for curing type 1 diabetes. It has recently been shown that, even in the absence of fibrotic over-growth, several factors, such as insufficient nutrition of the islet core, represent a major barrier for long-term survival of islets grafts. The use of immobilized dispersed cells may contribute to solve this problem due to conceivably easier nutritional and oxygen support to the cells. Therefore, we set out to establish an immobilization method for primary cultures of human pancreatic cells by adsorption onto microcarriers (MCs). Dispersed human islets cells were seeded onto Cytodex1 microcarriers and cultured in bioreactors for up to eight days. The cell number increased and islet cells maintained their insulin secretion levels throughout the time period studied. Moreover, the cells also presented a tendency to cluster upon five days culturing. Therefore, this procedure represents a useful tool for controlled studies on islet cells physiology and, also, for biotechnological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-beta superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34-38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence to suggest that reduced folate status may be a causative factor in carcinogenesis, particularly colorectal carcinogenesis. Folate is essential for the synthesis of S-adenosylmethionine, the methyl donor required for all methylation reactions in the cell, including the methylation of DNA. Global DNA hypomethylation appears to be an early, and consistent, molecular event in carcinogenesis. We have examined the effects of folate depletion on human-derived cultured colon carcinoma cells using 2 novel modifications to the Comet (single cell gel electrophoresis) assay to detect global DNA hypomethylation and gene region–specific DNA hypomethylation. Colon cells cultured in folate-free medium for 14 d showed a significant increase in global DNA hypomethylation compared with cells grown in medium containing 3µmol/L folic acid. This was also true at a gene level, with folate-deprived cells showing significantly more DNA hypomethylation in the region of the p53 gene. In both cases, the effects of folate depletion were completely reversed by the reintroduction of folic acid to the cells. These results confirm that decreased folate levels are capable of inducing DNA hypomethylation in colon cells and particularly in the region of the p53 gene, suggesting that a more optimal folate status in vivo may normalize any DNA hypomethylation, offering potential protective effects against carcinogenesis. This study also introduces 2 novel functional biomarkers of DNA hypomethylation and demonstrates their suitability to detect folate depletion–induced molecular changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular effects of biodiesel emissions particulate matter (BDEP) and petroleum diesel emissions particulate matter (PDEP) were compared using a human airway cell line, A549. At concentrations of 25 µg/ml, diesel particulate matter induced the formation of multinucleate cells. In cells treated with a mixture of 80% PDEP:20% BDEP, 52% of cells were multinucleate cells compared with only 16% of cells treated with 20% PDEP:80% BDEP with a background multinucleate rate of 7%. These results demonstrate a causal relation between the formation of multinucleate cells and exposure to exhaust particulate matter, in particular diesel exhaust. Exposure of A549 cells to PDEP induced apoptosis, seen by active caspase-3 expression and the presence of cleaved pancytokeratin. PDEP exhaust was a much stronger inducer of cellular death through apoptosis than BDEP. There was an eightfold increase in the expression of SLC30A3 (zinc transporter-3 or ZnT3) in cells exposed to 80% PDEP:20% BDEP compared to untreated cells. The increase in ZnT3 expression seen in apoptotic cells following PDEP suggests a role for this zinc transporter in the apoptotic pathway, possibly through controlling zinc fluxes. As exposure to diesel exhaust particles is associated with asthma and apoptosis in airway cells, diesel exhaust particles may directly contribute to asthma by inducing epithelial cell death through apoptotic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zn and DHA have putative neuroprotective effects and these two essential nutrients are known to interact biochemically. We aimed to identify novel protein candidates that are differentially expressed in human neuronal cell line M17 in response to Zn and DHA that would explain the molecular basis of this interaction. Two-dimensional gel electrophoresis and MS were applied to identify major protein expression changes in the protein lysates of human Ml7 neuronal cells that had been grown in the presence and absence of Zn and DHA. Proteomic findings were further investigated using Western immunoblot and real-time PCR analyses. Four protein spots, which had significant differential expression, were identified and selected for in-gel trypsin digestion followed by matrix-assisted laser desorption ionisation MS analysis. The resultant peptide mass fingerprint for each spot allowed their respective identities to be deduced. Two human histone variants H3 and H4 were identified. Both H3 and H4 were downregulated by Zn in the absence of DHA (Zn effect) and upregulated by DHA (DHA effect) in the presence of Zn (physiological condition). These proteomic findings were further supported by Western immunoblot and real-time PCR analyses using H3- and H4-specific monoclonal antibodies and oligonucleotide primers, respectively. We propose that dietary Zn and DHA cause a global effect on gene expression, which is mediated by histones. Such novel information provides possible clues to the molecular basis of neuroprotection by Zn and DHA that may contribute to the future treatment, prevention and management of neurodegenerative diseases such as Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed hematopoietic cells resistant to the cytotoxic effects of oxysterols. Oxysterol-resistant HL60 cells were generated by continuous exposure to three different oxysterols—25-hydroxycholesterol (25-OHC), 7-beta-hydroxycholesterol (7β-OHC) and 7-keto-cholesterol (7κ-C). We investigated the effects of 25-OHC, 7β-OHC, 7κ-C and the apoptotic agent staurosporine on these cells. The effect of the calcium channel blocker nifedipine on oxysterol cytotoxicity was also investigated. Differential display and real-time PCR were used to quantitate gene expression of oxysterol-sensitive and -resistant cells. Our results demonstrate that resistance to the cytotoxic effects of oxysterols is relatively specific to the type of oxysterol, and that the cytotoxicity of 25-OHC but not that of 7β-OHC and 7κ-C, appears to occur by a calcium dependent mechanism. Oxysterol-resistant cells demonstrated no significant difference in the expression of several genes previously implicated in oxysterol resistance, but expressed the bcl-2 gene at significantly lower levels than those observed in control cells. We identified three novel genes differentially expressed in resistant cells when compared to HL60 control cells. Taken together, the results of this study reveal potentially novel mechanisms of oxysterol cytotoxicity and resistance, and indicate that cytotoxicity of 25-OHC, 7β-OHC and 7κ-C occur by independent, yet overlapping mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) is predominantly expressed on high endothelial venules in inflamed tissues where it assists with leucocyte extravasation. Here we report that MAdCAM-1 has the potential to be more widely expressed outside the endothelial cell lineage than previously appreciated. Thus, MAdCAM-1 RNA transcripts and cell-surface protein were expressed by NIH 3T3 fibroblasts following activation with tumour necrosis factor-alpha (TNF-alpha), and by freshly isolated and cultured primary mouse splenic and tail fibroblasts in the absence of TNF-alpha stimulation. They were constitutively expressed by B16F10 melanoma cells, and expression was enhanced by cell activation with TNF-alpha. Mucosal vascular addressin cell adhesion molecule-1 was expressed on the apical surface of isolated cells, but became predominantly localized to cell junctions in confluent cell monolayers, suggesting it may play a role in the homotypic aggregation of cells. Tumour necrosis factor-alpha enhanced the expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter in NIH 3T3 and B16F10 cells. A DNA fragment extending from nt -1727 to -673 was sufficient to confer cell-type selective expression. Mucosal vascular addressin cell adhesion molecule-1 expressed by NIH 3T3 cells was biologically active, as it supported the adhesion of TK-1 T cells in an alpha4beta7-dependent fashion. The expression of MAdCAM-1 by fibroblasts, and melanomas suggests MAdCAM-1 may play a role in regulating host responses in the periphery, leucocyte transmigration across nonendothelial boundaries, or the homotypic interactions of some malignant melanomas.