994 resultados para Horizontal Gene Exchange
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
Members of the bacterial families Haemophilus and Neisseria, important human pathogens that commonly colonize the nasopharynx, are naturally competent for DNA uptake from their environment. In each genus this process is discriminant in favor of its own and against foreign DNA through sequence specificity of DNA receptors. The Haemophilus DNA uptake apparatus binds a 29-bp oligonucleotide domain containing a highly conserved 9-bp core sequence, whereas the neisserial apparatus binds a 10-bp motif. Each motif (“uptake sequence”, US) is highly over-represented in the chromosome of the corresponding genus, particularly concentrated with core sequences in inverted pairs forming gene terminators. Two Haemophilus core USs were unexpectedly found forming the terminator of sodC in Neisseria meningitidis (meningococcus), and sequence analysis strongly suggests that this virulence gene, located next to IS1106, arose through horizontal transfer from Haemophilus. By using USs as search strings in a computer-based analysis of genome sequence, it was established that while USs of the “wrong” genus do not occur commonly in Neisseria or Haemophilus, where they do they are highly likely to flag domains of chromosomal DNA that have been transferred from Haemophilus. Three independent domains of Haemophilus-like DNA were found in the meningococcal chromosome, associated respectively with the virulence gene sodC, the bio gene cluster, and an unidentified orf. This report identifies intergenerically transferred DNA and its source in bacteria, and further identifies transformation with heterologous chromosomal DNA as a way of establishing potentially important chromosomal mosaicism in these pathogenic bacteria.
Resumo:
The purpose of this work was to assess the degradation of linear alkylbenzene sulfonate (LAS) in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. The reactor was filled with polyurethane foam where the sludge from a sanitary sewage treatment was immobilized. The hydraulic detention time (HDT) used in the experiments was of 12 h. The reactor was fed with synthetic substrate (410 mg l(-1) of meat extract, 115 mg l(-1) of starch, 80 mg l(-1) of saccharose, 320 mg l(-1) of sodium bicarbonate and 5 ml l(-1)of salt solution) in the following stages of operation: SI-synthetic substrate, SII-synthetic substrate with 7 mg l(-1) of LAS, SIII-synthetic substrate with 14 mg l(-1) of LAS and SIV-synthetic substrate containing yeast extract (substituting meat extract) and 14 mg l(-1) of LAS, without starch. At the end of the experiment (313 days) a degradation of similar to 35% of LAS was achieved. The higher the concentration of LAS, the greater the amount of foam for its adsorption. This is necessary because the isotherm of LAS adsorption in the foam is linear for the studied concentrations (2 to 50 mg l(-1)). Microscopic analyses of the biofilm revealed diverse microbial morphologies, while Denaturing Gradient Gel Eletrophoresis (DGGE) profiling showed variations in the population of total bacteria and sulphate-reducing bacteria (SRB). The 16S rRNA gene sequencing and phylogenetic analyses revealed that the members of the order Clostridiales were the major components of the bacterial community in the last reactor operation step.
Resumo:
Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.
Resumo:
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and nematodes and are associated with various reproductive abnormalities in their hosts. Insect-associated Wolbachia form a monophyletic clade in the α-Proteobacteria and recently have been separated into two supergroups (A and B) and 19 groups. Our recent polymerase chain reaction (PCR) survey using wsp specific primers indicated that various strains of Wolbachia were present in mosquitoes collected from Southeast Asia. Here, we report the phylogenetic relationship of the Wolbachia strains found in these mosquitoes using wsp gene sequences. Our phylogenetic analysis revealed eight new Wolbachia strains, five in the A supergroup and three in the B supergroup. Most of the Wolbachia strains present in Southeast Asian mosquitoes belong to the established Mors, Con, and Pip groups.
Resumo:
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spc(r)) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
Resumo:
An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.
Resumo:
The evolution of hybrid polyploid vertebrates, their viability and their perpetuation over evolutionary time have always been questions of great interest. However, little is known about the impact of hybridization and polyploidization on the regulatory networks that guarantee the appropriate quantitative and qualitative gene expression programme. The Squalius alburnoides complex of hybrid fish is an attractive system to address these questions, as it includes a wide variety of diploid and polyploid forms, and intricate systems of genetic exchange. Through the study of genome-specific allele expression of seven housekeeping and tissue-specific genes, we found that a gene copy silencing mechanism of dosage compensation exists throughout the distribution range of the complex. Here we show that the allele-specific patterns of silencing vary within the complex, according to the geographical origin and the type of genome involved in the hybridization process. In southern populations, triploids of S. alburnoides show an overall tendency for silencing the allele from the minority genome, while northern population polyploids exhibit preferential biallelic gene expression patterns, irrespective of genomic composition. The present findings further suggest that gene copy silencing and variable expression of specific allele combinations may be important processes in vertebrate polyploid evolution.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
INTRODUCTION:The objectives of this study were evaluate hepatitis B virus (HBV) serological markers in children and adolescents followed up at the Child Institute of the Hospital das Clínicas, Faculdade de Medicina de São Paulo, Universidade de São Paulo; identify chronic HBV carriers and susceptible individuals in the intrafamilial environment; characterize HBV genotypes; and identify mutations in the patients and household contacts. METHODS: Ninety-five hepatitis B surface antigen-positive children aged <19 years and 118 household contacts were enrolled in this study. Commercial kits were used for the detection of serological markers, and PCR was used for genotyping. RESULTS: Hepatitis B e antigen (HBeAg) was detected in 66.3% (63/95) of cases. Three of the 30 HBeAg-negative and anti-HBeAg-positive patients presented with precore mutations and 11 presented with mutations in the basal core promoter (BCP). Genotype A was identified in 39 (43.8%) patients, genotype D in 45 (50.6%), and genotype C in 5 (5.6%). Of the 118 relatives, 40 were chronic HBV carriers, 52 presented with the anti-HBc marker, 19 were vaccinated, and 7 were susceptible. Among the relatives, genotypes A, D, and C were the most frequent. One parent presented with a precore mutation and 4 presented with BCP mutations. CONCLUSIONS: Genotypes A and D were the most frequent among children, adolescents, and their relatives. The high prevalence of HBV in the families showed the possibility of its intrafamilial transmission.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops.
Resumo:
Integrons play a role in horizontal acquisition and expression of genes, as well as gene reservoir, contributing for the resistance phenotype, particularly relevant to bacteria of clinical importance. We aimed to determine the composition and the organization of the class 1 integron variable region present in Pseudomonas aeruginosa clinical isolates from Brazil. Strains carrying class 1 integrons were resistant to the majority of antibiotics tested, except to imipenem and ceftazidime. Sequence analysis of the integron variable region revealed the presence of the blaCARB-4 gene into two distinct cassette arrays: aacA4-dhfrXVb-blaCARB-4 and aadB-aacA4-blaCARB-4 . dhfrXVb gene cassette, which is rare in Brazil and in P. aeruginosa species, was found in one isolate. PFGE analysis showed the spread of blaCARB-4 among P. aeruginosa clones. The occurrence of blaCARB-4 and dhfrXVb in Brazil may contribute for developing resistance to clinically important antibiotics, and shows a diversified scenarium of these elements occurring in Amazon clinical settings, where no study about integron dinamycs was performed to date.
Resumo:
The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease.