325 resultados para Hopf hypersurfaces
Resumo:
In metallurgic plants a high quality metal production is always required. Nowadays soft computing applications are more often used for automation of manufacturing process and quality control instead of mechanical techniques. In this thesis an overview of soft computing methods presents. As an example of soft computing application, an effective model of fuzzy expert system for the automotive quality control of steel degassing process was developed. The purpose of this work is to describe the fuzzy relations as quality hypersurfaces by varying number of linguistic variables and fuzzy sets.
Resumo:
This study explores biomonitoring communication with workers exposed to risks. Using a qualitative approach, semi-directive interviews were performed. Results show that occupational physicians and workers share some perceptions, but also point out communication gaps. Consequently, informed consent is not guaranteed. This article proposes some recommendations for occupational physicians' practices.
Resumo:
Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.
Resumo:
The ventral striatum / nucleus accumbens has been implicated in the craving for drugs and alcohol which is a major reason for relapse of addicted people. Craving might be induced by drug-related cues. This suggests that disruption of craving-related neural activity in the nucleus accumbens may significantly reduce craving in alcohol-dependent patients. Here we report on preliminary clinical and neurophysiological evidence in three male patients who were treated with high frequency deep brain stimulation of the nucleus accumbens bilaterally. All three had been alcohol dependent for many years, unable to abstain from drinking, and had experienced repeated relapses prior to the stimulation. After the operation, craving was greatly reduced and all three patients were able to abstain from drinking for extended periods of time. Immediately after the operation but prior to connection of the stimulation electrodes to the stimulator, local field potentials were obtained from the externalized cables in two patients while they performed cognitive tasks addressing action monitoring and incentive salience of drug related cues. LFPs in the action monitoring task provided further evidence for a role of the nucleus accumbens in goal-directed behaviors. Importantly, alcohol related cue stimuli in the incentive salience task modulated LFPs even though these cues were presented outside of the attentional focus. This implies that cue-related craving involves the nucleus accumbens and is highly automatic.
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution.
Resumo:
Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous développons ainsi deux mécanismes permettant de conclure qu’un point singulier monodromique dans ce système non-linéaire polynomial est un centre. Le premier mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques invariantes dans la construction d’une intégrale première. La deuxième méthode analyse la réversibilité algébrique ou analytique du système. Un système possédant une singularité monodromique et étant algébriquement ou analytiquement réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss généralisé avec récolte de proies.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ce mémoire consiste en l’étude du comportement dynamique de deux oscillateurs FitzHugh-Nagumo identiques couplés. Les paramètres considérés sont l’intensité du courant injecté et la force du couplage. Juqu’à cinq solutions stationnaires, dont on analyse la stabilité asymptotique, peuvent co-exister selon les valeurs de ces paramètres. Une analyse de bifurcation, effectuée grâce à des méthodes tant analytiques que numériques, a permis de détecter différents types de bifurcations (point de selle, Hopf, doublement de période, hétéroclinique) émergeant surtout de la variation du paramètre de couplage. Une attention particulière est portée aux conséquences de la symétrie présente dans le système.
Resumo:
Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.
Resumo:
Les fonctions génératrices des coefficients de Clebsch Gordan pour la superalgèbre de Lie osp(1|2) sont dérivées en utilisant deux approches. Une première approche généralise une méthode proposée par Granovskii et Zhedanov pour l'appliquer dans le cas de osp(1|2), une algèbre dont le coproduit est torsadé. Une seconde approche repose sur la réalisation de osp(1|2) en tant qu'algèbre dynamique d'un oscillateur parabosonique et utilise une équivalence dans cette réalisation entre le changements de coordonnées polaires à cartésiennes et le problème de Clebsch-Gordan. Un chapitre moins formel précède ces dérivations et présente comment le problème de Clebsch-Gordan s'interprète en tant que réalisation d'une algèbre de fusion. La notion abstraite de fusion est introduite, soulignant son importance en physique, pour en venir au cas particulier du problème de Clebsch-Gordan. Un survol du cas de l'algèbre osp(1|2) et de ses utilisations en physique mathématique conclut ce chapitre.
Resumo:
In the present paper we use a time delay epsilon > 0 for an energy conserving approximation of the nonlinear term of the non-stationary Navier-Stokes equations. We prove that the corresponding initial value problem (N_epsilon)in smoothly bounded domains G \subseteq R^3 is well-posed. Passing to the limit epsilon \rightarrow 0 we show that the sequence of stabilized solutions has an accumulation point such that it solves the Navier-Stokes problem (N_0) in a weak sense (Hopf).