877 resultados para Highway infrastructure
Resumo:
This paper describes a pilot study centred on the technology-enhanced self-development of competences in lifelong learning education carried out in the challenging context of the Association of Participants Àgora. The pilot study shows that the use of the TENCompetence infrastructure, i.e. in this case the Personal Development Planner tool, provides various kinds of benefits for adult participants with low educational profiles and who are traditionally excluded from the use of innovative learning technologies and the knowledge society. The selforganized training supported by the PDP tool aims at allowing the learners to create and control their own learning plans based on their interests and educational background including informal and non-formal experiences. In this sense, the pilot participants had the opportunity to develop and improve their competences in English language (basic and advanced levels) and ICT competence profiles which are mostly related to functional and communicative skills. Besides, the use of the PDP functionalities, such as the self-assessment, the planning and the self-regulating elements allowed the participants to develop reflective skills. Pilot results also provide indications for future developments in the field of technology support for self-organized learners. The paper introduces the context and the pilot scenario, indicates the evaluation methodology applied and discusses the most significant findings derived from the pilot study.
Resumo:
This paper describes an experiment to explore the effects of the TENCompetence infrastructure for supporting lifelong competence development which is now in development. This infrastructure provides structured, multi-leveled access to learning materials, based upon competences. People can follow their own learning path, supported by a listing of competences and their components, by competence development plans attached to competences and by the possibility to mark elements as complete. We expected the PCM to have an effect on (1) control of participants of their own learning, and (2) appreciation of their learning route, (3) of the learning resources, (4) of their competence development, and (5) of the possibilities of collaboration. In the experiment, 44 Bulgarian teachers followed a distance learning course on a specific teaching methodology for six weeks. Part of them used the TENCompetence infrastructure, part used an infrastructure which was similar, except for the characterizing elements mentioned above. The results showed that in the experimental condition, more people passed the final competence assess-ment, and people felt more in control of their own learning. No differences between the two groups were found on the amount and appreciation of collaboration and on further measures of competence development.
Resumo:
The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.
Resumo:
The State of Iowa currently has approximately 69,000 miles of unpaved secondary roads. Due to the low traffic count on these unpaved o nts as ng e two dust ed d roads, paving with asphalt or Portland cement concrete is not economical. Therefore to reduce dust production, the use of dust suppressants has been utilized for decades. This study was conducted to evaluate the effectiveness of several widely used dust suppressants through quantitative field testing on two of Iowa’s most widely used secondary road surface treatments: crushed limestone rock and alluvial sand/gravel. These commercially available dust suppressants included: lignin sulfonate, calcium chloride, and soybean oil soapstock. These suppressants were applied to 1000 ft test sections on four unpaved roads in Story County, Iowa. Tduplicate field conditions, the suppressants were applied as a surface spray once in early June and again in late August or early September. The four unpaved roads included two with crushed limestone rock and two with alluvial sand/gravel surface treatmewell as high and low traffic counts. The effectiveness of the dust suppressants was evaluated by comparing the dust produced on treated and untreated test sections. Dust collection was scheduled for 1, 2, 4, 6, and 8 weeks after each application, for a total testiperiod of 16 weeks. Results of a cost analysis between annual dust suppressant application and biennial aggregate replacement indicated that the cost of the dust suppressant, its transportation, and application were relatively high when compared to that of thaggregate types. Therefore, the biennial aggregate replacement is considered more economical than annual dust suppressant application, although the application of annual dust suppressant reduced the cost of road maintenance by 75 %. Results of thecollection indicated that the lignin sulfonate suppressant outperformed calcium chloride and soybean oil soapstock on all four unpavroads, the effect of the suppressants on the alluvial sand/gravel surface treatment was less than that on the crushed limestone rock, the residual effects of all the products seem reasonably well after blading, and the combination of alluvial sand/gravel surface treatment anhigh traffic count caused dust reduction to decrease dramatically.
Resumo:
Annual report for Iowa Department of Transportation
Resumo:
The Highway Division of the Iowa Department of Transportation engages in research and development for two reasons: first, to find workable solutions to the many problems that require more than ordinary, routine investigation; second, to identify and implement improved engineering and management practices. This report, entitled Highway Division Highway Research and Development in Iowa, is submitted in compliance with Sections 310.36 and 312.3A, Code of Iowa, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund respectively. It is a report of the status of research and development projects, which were in progress on June 30, 2005; it is also a report on projects completed during the fiscal year beginning July 1, 2004, and ending June 30, 2005. Detailed information on each of the research and development projects mentioned in this report is available in the Research and Technology Bureau in the Highway Division of the Iowa Department of Transportation.
Resumo:
In this day of the mature highway systems, a new set of problems is facing the highway engineer. The existing infrastructure has aged to or past the design life of the original pavement design. In many cases, increased commercial traffic is creating the need for additional load carrying capacity, causing state highway engineers to consider new alternatives for rehabilitation of existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement overlays and subsequent rehabilitation. The Iowa ultra-thin project demonstrated the application of thin portland cement concrete overlays as a rehabilitation technique. It combined the variables of base preparation, overlay thickness, slab size, and fiber enhancement into a series of test sections over a 7.2-mile length. This report identifies the performance of the overlays in terms of deflection reduction, reduced cracking, and improved bonding between the portland cement concrete (PCC) and asphalt cement concrete (ACC) base layers. The original research project was designed to evaluate the variables over a 5-year period of time. A second project provided the opportunity to test overlay rehabilitation techniques and continue measurement of the original overlay performance for 5 additional years. All performance indicators identified exceptional performance over the 10-year evaluation period for each of the variable combinations considered. The report summarizes the research methods, results, and identifies future research ideas to aid the pavement overlay designer in the successful implementation of ultra-thin portland cement concrete overlays as an lternative pavement rehabilitation technique.
Resumo:
The Seedling Mile in Linn County, Iowa, was part of the Lincoln Highway Association’s so-called “object lesson” program that sought to graphically demonstrate, in the paving of selected one-mile demonstration sections, the benefits of concrete paving to improving road travel across the nation. Constructed in 1918-19, this Seedling Mile became much more than an object lesson and served as something of a battleground between two municipalities—Marion and Cedar Rapids—in their struggle over the county seat and their place on the Lincoln Highway. The Seedling Mile eventually became part of a continuously paved section of the Lincoln Highway between Chicago and Cedar Rapids, with the whole of the Lincoln Highway in Iowa paved in some fashion by the 1930s. In 2002, Linn County reconstructed Mt. Vernon Road from the City of Mt. Vernon to the west end of the Seedling Mile impacting the historic road section. An agreement between concerned government agencies resulted in this publication in partial mitigation of the impact to this historic road section under the guidelines of the National Historic Preservation Act.
Resumo:
The Highway Division of the Iowa Department of Transportation engages in research and development for two reasons: first, to find workable solutions to the many problems that require more than ordinary, routine investigation; and second, to identify and implement improved engineering and management practices. This report is submitted in compliance with Sections 310.36 and 312.3A, Code of Iowa, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund, respectively. It is a report of the status of research and development projects, which were in progress on June 30, 2006; it is also a report on projects completed during the fiscal year beginning July 1, 2005, and ending June 30, 2006.
Resumo:
Traffic volume increases and an aging infrastructure create the need for reconstruction, rehabilitation, and maintenance of existing facilities. As more motorists feel that delays should be minimal during highway renewal projects, lane closures that reduce capacity through the work zone should not create unreasonable delays. In order to facilitate the determination of when a lane closure is permitted during the day, some state transportation agencies (STAs) have developed lane closure policies, or strategies, that they use as guidance in determining daily permitted lane closure times. Permitted lane closure times define what times of the day, week, or season a lane closure is allowed on a facility and at a specific location or segment. This research addresses the lane closure policies of several STAs that were reputed to have good lane closures policies or strategies and that were selected by the project advisory committee for further research.
Resumo:
Audit report on Highway Safety Projects administered by The Integer Group Midwest for the year ended September 30, 2006
Resumo:
Major maintenance; health, safety, loss of use; and Americans with Disablities Act deficiencies at the Capitol Complex and statewide for twelve agencies and divisions participating in the Vertical Infrastructure Program in collaboration with the Governor's Vertical Infrastructure Advisory Committee, including the Department of Administrative Services; the Department of Commerce, Alcoholic Beverages Division; the Department of Corrections; the Department of Cultural Affairs; the Department of Education, including Iowa Public Television and Iowa Vocational Rehabilitation Services; the Department of Human Services; Iowa Law Enforcement Academy; the Department of Public Safety; Terrace Hill; Iowa Veterans Home and Iowa Workforce Development. The advisory committee meets on a monthly basis to review the progress of the work and to make recommendations on procedures and priorities. Additional information on major maintenance projects is available in the advisory committee's Eighth Annual Report to the Governor, dated December 15, 2006.
Resumo:
In accordance with the Code of Iowa, Section 8.57, this annual report summarizes the status of all ongoing building related projects for which an appropriation from the Rebuild Iowa Infrastructure Fund, the Vertical Infrastructure Fund or the Tobacco Settlement Trust Fund has been made to the Department of Administrative Services. The report includes projects for which funding reverted in 2006 as well as ongoing projects.
Resumo:
Replication Template for Improving Transition Outcomes Henry County Transition Partners Prototype. This concise document will help you build a community team and the infrastructure necessary to implement and plan for sustaining specific initiatives.
Resumo:
The Highway Division of the Iowa Department of Transportation (Iowa DOT) engages in research and development for two reasons: first, to find workable solutions to the many problems that require more than ordinary, routine investigation; second, to identify and implement improved engineering and management practices. This report, entitled “Iowa Highway Research Board Research and Development Activities FY2007” is submitted in compliance with Sections 310.36 and 312.3A, Code of Iowa, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund respectively. It is a report of the status of research and development projects, which were in progress on June 30, 2007; it is also a report on projects completed during the fiscal year beginning July 1, 2006, and ending June 30, 2007. Detailed information on each of the research and development projects mentioned in this report is available in the Research and Technology Bureau in the Highway Division of the Iowa Department of Transportation.