933 resultados para Highway engineering
Resumo:
The AASHO specifications for highway bridges require that in designing a bridge, the live load must be multiplied by an impact factor for which a formula is given, dependent only upon the length of the bridge. This formula is a result of August Wohler's tests on fatigue in metals, in which he determined that metals which are subjected to large alternating loads will ultimately fail at lower stresses than those which are subjected only to continuous static loads. It is felt by some investigators that this present impact factor is not realistic, and it is suggested that a consideration of the increased stress due to vibrations caused by vehicles traversing the span would result in a more realistic impact factor than now exists. Since the current highway program requires a large number of bridges to be built, the need for data on dynamic behavior of bridges is apparent. Much excellent material has already been gathered on the subject, but many questions remain unanswered. This work is designed to investigate further a specific corner of that subject, and it is hoped that some useful light may be shed on the subject. Specifically this study hopes to correlate, by experiment on a small scale test bridge, the upper limits of impact utilizing a stationary, oscillating load to represent axle loads moving past a given point. The experiments were performed on a small scale bridge which is located in the basement of the Iowa Engineering Experiment Station. The bridge is a 25 foot simply supported span, 10 feet wide, supported by four beams with a composite concrete slab. It is assumed that the magnitude of the predominant forcing function is the same as the magnitude of the dynamic force produced by a smoothly rolling load, which has a frequency determined by the passage of axles. The frequency of passage of axles is defined as the speed of the vehicle divided by the axle spacing. Factors affecting the response of the bridge to this forcing function are the bridge stiffness and mass, which determine the natural frequency, and the effects of solid damping due to internal structural energy dissipation.
Resumo:
Brief summaries of achievement and important events of the Iowa State Highway Commission and transportation engineering in Iowa, between 1904 and 1971.
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.
Resumo:
In 1982, Iowa's crossing warning identification system and signage at rail crossings were outdated, inconsistent and inadequate. Iowa's railroad system had been reduced and reorganized during the 1970's and many of the surviving railroad companies were unable to install new signs or devote staff to updating information. The preliminary engineering part of this project improved the information inventory about each crossing, provided for installation of identification tags and resulted in a comprehensive list of posts and signs eligible for replacement. The sign installation portion of this project resulted in erection of nearly 10,000 new crossbuck signs and 10,000 advance warning signs with high intensity reflectorization. In addition, new posts and multiple track signs were replaced where appropriate. Increased visibility of crossings for the motoring public has resulted from proper sign placement and use of high intensity reflectorization. The tagging has provided a consistent correct identification of crossings for accident reporting. The computer inventory of information about the crossings is now correct and provides for informed decision making to administrators of Federal and State crossing safety funds.
Resumo:
The Engineering Research Institute at Iowa State University studied the organization and procedures for highway planning by all levels of government and the coordination among various state agencies and local governments in Iowa. Study information was derived from interviews, questionnaires, and a review of the literature. Representatives from state transportation or highway organizations in all states responded to questionnaires. Additionally, selected upper and intermediate level personnel from highway organizations in seven other states were interviewed and a visit was made to one state transportation department. Within Iowa, employees were interviewed in the Highway Commission, Office for Planning and Programming, Development Commission, Commerce Commission, Conservation Commission, and Highway Patrol. Nearly 600 officials of local governments in Iowa contributed factual data and opinions through questionnaires and interviews. Private citizens and consultants also provided input to the investigation through their responses to questionnaires. Twelve recommendations to improve highway planning in Iowa were formulated as a result of this study.
Resumo:
Joint Publications from Iowa Engineering Experiment Station - Bulletin No. 190 and Iowa Highway Research Board - Bulletin No. 19. This bulletin is a report on the development of bituminous paving mixtures containing various local materials and asphaltic binders. The laboratory investigations described in this bulletin were performed as part of Iowa Highway Research Board project HR-20, "Treating Loess, Fine Sands, and Limestone Dusts With Liquid Binders." This project was awarded to the Iowa Engineering Experiment Station of Iowa State University in 1952, and continued to June, 1958.
Resumo:
Joint Publications from Iowa Engineering Experiment Station - Bulletin No. 188 and Iowa Highway Research Board - Bulletin No. 17. In the design of highway bridges, the 'static live load is multiplied by a factor to compensate for the dynamic effect of moving vehicles. This factor, commonly referred to as an impact factor, is intended to provide for the dynamic response of the bridge to moving loads and suddenly applied forces. Many investigators have published research which contradicts the current impact formula 1,4,17. Some investigators feel that the problem of impact deals not only with the increase in over-all static live load but that it is an integral part of a dynamic load distribution problem. The current expanded highway program with the large number of bridge structures required emphasizes the need for investigating some of the dynamic behavior problems which have been generally ignored by highway engineers. These problems generally result from the inability of a designer to predict the dynamic response of a bridge structure. Many different investigations have been made of particular portions of the overall dynamic problem. The results of these varied investigations are inevitably followed by a number of unanswered questions. Ironically, many of the unanswered questions are those which are of immediate concern in the design of highway bridges, and this emphasizes the need for additional research on the problem of impact.
Resumo:
A contract for Project HR-20 "Treating Loess, Fine Sands and Soft Limestones with Liquid Binders" of the Iowa Highway Research Board was awarded in December, 1951, to the Iowa Engineering Experiment Station of Iowa State University as its Project 295-S. By 1954 the studies of the fine materials and asphalts had progressed quite well, and a method of treating the fine materials, called the atomization process, had been applied. A study was begun in 1954 to see if some of the problems of the atomization process could be solved with the use of foamed asphalt. Foamed asphalt has several advantages. The foaming of asphalt increases its volume, reduces its viscosity, and alters its surface tension so that it will adhere tenaciously to solids. Foamed asphalt displaces moisture from the surface of a solid and coats it with a thin film. Foamed asphalt can permeate deeply into damp soils. In the past these unusual characteristics were considered nuisances to be avoided if possible.
Resumo:
Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.
Resumo:
After joining the European Union in 1986, Spain experienced steady economic growth that enabled the country to grow at a greater pace than other European countries. During this period, the government of Spain opted for major investments in public infrastructure by taking advantage both of the funding provided by the European Union and of several types of public-private-partnership (PPP) approaches. Within this framework, the government of Spain between 1996 and 2004 procured a series of toll highway concessions. These concessions entered into operation a few years before the global economic recession made itself felt in Spain. The concession contracts signed between the government and some private consortia allocated most of the risks (expropriation, construction, and traffic) to the private sector. In this paper the impact that the economic recession has had on the business performance of the concessionaires is assessed, and the effectiveness of the measures adopted by the government to help the concessionaire to avoid bankruptcy is analyzed. It was found that some of the guarantees offered by the legal framework to the concessionaires in case of bankruptcy are prompting an outcome that could negatively affect the users. In addition to that, some suggestions as to how to better allocate risk in toll highway concessions in the future are provided.
The development of an improved railroad-highway grade crossing risk factor. Executive summry report.
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
Transportation Department, Office of University Research, Washington, D.C.
Resumo:
Louisiana Department of Transportation and Development, Research and Development Section, Baton Rouge
Resumo:
"June 1978."