884 resultados para High-Strain Rates
Resumo:
High strength steels can suffer from a loss of ductility when exposed to hydrogen, and this may lead to sudden failure. The hydrogen is either accommodated in the lattice or is trapped at defects, such as dislocations, grain boundaries and carbides. The challenge is to identify the effect of hydrogen located at different sites upon the drop in tensile strength of a high strength steel. For this purpose, literature data on the failure stress of notched and un-notched steel bars are re-analysed; the bars were tested over a wide range of strain rates and hydrogen concentrations. The local stress state at failure has been determined by the finite element (FE) method, and the concentration of both lattice and trapped hydrogen is predicted using Oriani's theory along with the stress-driven diffusion equation. The experimental data are rationalised in terms of a postulated failure locus of peak maximum principal stress versus lattice hydrogen concentration. This failure locus is treated as a unique material property for the given steel and heat treatment condition. We conclude that the presence of lattice hydrogen increases the susceptibility to hydrogen embrittlement whereas trapped hydrogen has only a negligible effect. It is also found that the observed failure strength of hydrogen charged un-notched bars is less than the peak local stress within the notched geometries. Weakest link statistics are used to account for this stressed volume effect. © 2013 Elsevier Ltd.
Resumo:
Melt-mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites with 1–10 wt% MWCNTs were prepared by twin screw extrusion and compression moulded into sheet form. The compression moulded nanocomposites exhibit a 112% increase in modulus at a MWCNT loading of 4 wt%, and a low electrical percolation threshold of 1.9 wt%. Subsequently, uniaxial, sequential (seq-) biaxial and simultaneous (sim-) biaxial stretching of the virgin HDPE and nanocomposite sheets was conducted at different strain rates and stretching temperatures to investigate the processability of HDPE with the addition of nanotubes and the influence of deformation on the structure and final properties of nanocomposites. The results show that the processability of HDPE is improved under all the uniaxial and biaxial deformation conditions due to a strengthened strain hardening behaviour with the addition of MWCNTs. Extensional deformation is observed to disentangle nanotube agglomerates and the disentanglement degree is shown to depend on the stretching mode, strain rate and stretching temperatures applied. The disentanglement effectiveness is: uniaxial stretching < sim-biaxial stretching < seq-biaxial stretching, under the same deformation parameters. In sim-biaxial stretching, reducing the strain rate and stretching temperature can lead to more nanotube agglomerate breakup. Enhanced nanotube agglomerate disentanglement exhibits a positive effect on the mechanical properties and a negative effect on the electrical properties of the deformed nanocomposites. The ultimate stress of the composite containing 4 wt% MWCNTs increased by ∼492% after seq-biaxial stretching, while the resistivity increased by ∼1012 Ω cm.
Resumo:
Giant freshwater prawn, Macrobrachium rosenbergii (de Man), is an important commercial species with considerable export value, ideal for cultivation under low saline conditions and in freshwater zones (Kurup 1994). However, despite more than a decade of research on its larval production systems, vibriosis still hampers seed production resulting in high mortality rates. Among the different species of vibrios, Vibrio alginolyticus has been isolated frequently from diseased shrimp as the aetiological agent of vibriosis and has been described as a principal pathogen of both penaeids and nonpenaeids (Lightner 1988; Baticados, Cruz-Lacierda, de la Cruz, Duremdez-Fernandez, Gacutan, Lavilla- Pitogo & Lio-Po 1990; Mohney, Lightner & Bell 1994; Lee, Yu, Chen, Yang & Liu 1996). Vibrio fluvialis, V. alginolyticus, V. cholerae non-O1 (Fujioka & Greco 1984), Aeromonas liquifaciens and V. anguillarum (Colorni 1985) have been isolated from the larvae of M. rosenbergii. A profound relationship between the abundance of members of the family Vibrionaceae and larval mortality (Singh 1990) and the predominance of Vibrio in eggs, larvae and post-larvae of M. rosenbergii (Hameed, Rahaman, Alagan & Yoganandhan 2003) was reported. The present paper reports the isolation, characterization, pathogenicity and antibiotic sensitivity of V. alginolyticus associated with M. rosenbergii larvae during an occurrence of severe mass mortality at the ninth larval stage.
Resumo:
A multiyear solution of the SIRGAS-CON network was used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 140 geodetic points located in the South American plate. The strain rate was determined by the finite element method using Delaunay triangulation points that formed sub-networks; each sub-network was considered a solid and homogeneous body. The results showed that strain rates vary along the South American plate and are more significant on the western portion of the plate, as expected, since this region is close to the subduction zone of the Nazca plate beneath the South American plate. After using Euler vectors to infer Nazca plate movement and to orient the velocity vectors of the South American plate, it was possible to estimate the convergence and accommodation rates of the Nazca and South American plates, respectively. Strain rate estimates permitted determination of predominant contraction and/or extension regions and to establish that contraction regions coincide with locations with most of the high magnitude seismic events. Some areas with extension and contraction strains were found to the east within the stable South American plate, which may result from different stresses associated with different geological characteristics. These results suggest that major movements detected on the surface near the Nazca plate occur in regions with more heterogeneous geological structures and multiple rupture events. Most seismic events in the South American plate are concentrated in areas with predominant contraction strain rates oriented northeast-southwest; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies. © 2013 Elsevier Ltd.
Resumo:
Experimental measurements are used to characterize the anisotropy of flow stress in extruded magnesium alloy AZ31 sheet during uniaxial tension tests at temperatures between 350°C and 450°C, and strain rates ranging from 10-5 to 10-2 s-1. The sheet exhibits lower flow stress and higher tensile ductility when loaded with the tensile axis perpendicular to the extrusion direction compared to when it is loaded parallel to the extrusion direction. This anisotropy is found to be grain size, strain rate, and temperature dependent, but is only weakly dependent on texture. A microstructure based model (D. E. Cipoletti, A. F. Bower, P. E. Krajewski, Scr. Mater., 64 (2011) 931–934) is used to explain the origin of the anisotropic behavior. In contrast to room temperature behavior, where anisotropy is principally a consequence of the low resistance to slip on the basal slip system, elevated temperature anisotropy is found to be caused by the grain structure of extruded sheet. The grains are elongated parallel to the extrusion direction, leading to a lower effective grain size perpendicular to the extrusion direction. As a result, grain boundary sliding occurs more readily if the material is loaded perpendicular to the extrusion direction.
Resumo:
Clostridium chauvoei is the etiological agent of blackleg, a disease of cattle and sheep with high mortality rates, causing severe economic losses in livestock production. Here, we report the draft genome sequence of the virulent C. chauvoei strain JF4335 (2.8 Mbp and 28% G+C content) and the annotation of the genome.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km. Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa. Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.
Resumo:
Background: Hamstring strain injuries (HSI) are one of the most common injuries in a wide variety of running-sports, resulting in a considerable loss of competition and training time. One of the most problematic consequences regarding HSI is the recurrence rate and its non-decrease over the past decades, despite increasing evidence. Recent studies also found several maladaptations post-HSI probably due to neuromuscular inhibition and it has been proposed that these adaptations post-injury may contribute as risk factors for the injury-reinjury cycle and high recurrence rates. Furthermore it has been recently proposed not to disregard the inter-relationship between these adaptations and risk-factors post-injury in order to better understand the mechanisms of this complex injury. Objective: To determine, analyze and correlate neuromuscular adaptations in amateur football players with prior history of HSI per comparison to uninjured athletes in similar conditions. Methodology: Every participant was subjected to isokinetic concentric (60 and 240deg.sec) and eccentric (30 and 120deg.sec¯¹) testing, and peak torque, angle of peak torque and hamstrings to quadriceps (H:Q) conventional ratios were measured, myoelectrical activity of Bicep Femoris (BF) and Medial Hamstrings (MH) were also measured during isokinetic eccentric testing at both velocities and muscle activation percentages were calculated at 30, 50 and 100ms after onset of contraction. Furthermore active and passive knee extension, knee joint position sense (JPS) test, triple-hop distance (THD) test and core stability (flexors and extensors endurance, right and left side bridge test) were used and correlated. Results: Seventeen players have participated in this study: 10 athletes with prior history of HSI, composing the Hamstring injury group (HG) and 7 athletes without prior severe injuries as control group (CG). We found statistical significant differences between HG injured and uninjured sides in the BF myoelectrical activity at almost all times in both velocities and between HG injured and CG non-dominant sides at 100ms in eccentric 120deg.sec¯¹ velocity (p<.05). We found no differences in MH activity. Regarding proprioception we found differences between the HG injured and uninjured sides (p=.027). We found no differences in the rest of used tests. However, significant correlation between myoelectrical activation at 100ms in 120deg.sec¯¹ testing and JPS with initial position at 90º (r-.372; p=0.031) was found, as well as between isokinetic H:Q ratio at 240deg.sec and THD score (r=-.345; p=.045). Conclusion: We found significant differences that support previous research regarding neuromuscular adaptations and BF inhibition post-HSI. Moreover, to our knowledge, this was the first study that found correlation between these adaptations, and may open a door to new perspectives and future studies.
Resumo:
Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.
Resumo:
Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.
Resumo:
Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ~3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.
Resumo:
There are many continuum mechanical models have been developed such as liquid drop models, solid models, and so on for single living cell biomechanics studies. However, these models do not give a fully approach to exhibit a clear understanding of the behaviour of single living cells such as swelling behaviour, drag effect, etc. Hence, the porohyperelastic (PHE) model which can capture those aspects would be a good candidature to study cells behaviour (e.g. chondrocytes in this study). In this research, an FEM model of single chondrocyte cell will be developed by using this PHE model to simulate Atomic Force Microscopy (AFM) experimental results with the variation of strain rate. This material model will be compared with viscoelastic model to demonstrate the advantages of PHE model. The results have shown that the maximum value of force applied of PHE model is lower at lower strain rates. This is because the mobile fluid does not have enough time to exude in case of very high strain rate and also due to the lower permeability of the membrane than that of the protoplasm of chondrocyte. This behavior is barely observed in viscoelastic model. Thus, PHE model is the better model for cell biomechanics studies.