942 resultados para High energy photons
Resumo:
We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The ligands PhL and MeL are obtained by condensing 2-formylpyridine with benzil dihydrazone and diacetyl dihydrazone, respectively, in 2: 1 molar proportion. With silver( I), PhL yields a double-stranded dinuclear cationic helicate 1 in which the metal is tetrahedral but MeL gives a cationic one-dimensional polymeric complex 2 where silver( I) is distorted square planar and the ligand backbone is nearly planar. In both complexes, metal: ligand ratio is 1: 1. Ab initio calculations on the ligands at the HF/6-31+G* level reveal that while PhL strongly prefers a helical conformation, MeL has a natural inclination to remain in a planar conformation. Density functional theory calculations on model silver( I) complexes show that formation of the linear polymer in the case of MeL is also an important factor in imposing the planar geometry of Ag(I) in 2.
Resumo:
Reaction of Cu(1,2-phenylenediamine)(2)(ClO4)(2) with neat RR'=O (R = methyl and/or ethyl) (lives Cu(2,2-dialkyl-2H-benzimidazole)ClO4. demetallation of which by the action of aqueous ammonia yields Pure 2,2-dialkyl-2H-benzimidazoles. These are characterised by NMR. hi the X-ray crystal Structure, Ag(2,2-methyl-2H-benzimi-dazolc)NO3 is Found to be a spiral 1D coordination polymer where the 2H-benzimidazole acts as an N,N bridge between two Ag(I) centus. Although 2H-benzimidazoles are very unstable in the free state, they are quite stable in their Cu(I)(1) and Ag(I) complexes. The 1,2-tautomerisation in imidazole and benzimidazole have been Studied by means of transition state calculations at B3LYP/6-3 11 +G(2d,p)* level.
Resumo:
We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The letters published in the ‘Focus issue on high energy particles and atmospheric processes’ serve to broaden the discussion about the influence of high energy particles on the atmosphere beyond their possible effects on clouds and climate. These letters link climate and meteorological processes with atmospheric electricity, atmospheric chemistry, high energy physics and aerosol science from the smallest molecular cluster ions through to liquid droplets. Progress in such a disparate and complex topic is very likely to benefit from continued interdisciplinary interactions between traditionally distinct science areas.
Resumo:
We propose a model for the antihyperon polarization in high-energy proton-nucleus inclusive reactions, based on the final-state interactions between the antihyperons and other produced particles (predominantly pions). To formulate this idea, we use the previously obtained low-energy pion-(anti-)hyperon interaction using effective chiral Lagrangians, and a hydrodynamic parametrization of the background matter, which expands and decouples at a certain freezeout temperature.
Resumo:
Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.
Resumo:
The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E(th) = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E(th) are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above E(th)/Z (for illustrative values of Z = 6, 13, 26). If the anisotropies above E(th) are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.
Resumo:
The high-energy states of a shallow donor in a GaAs/Ga0.7Al0.3As multiple-quantum-well structure subjected to a magnetic field in the growth direction are studied both theoretically and experimentally. Effects due to higher confinement subbands as well as due to the electron-phonon interaction are investigated. We show that most of the peaks in the infrared photoconductivity spectrum are due to direct transitions from the ground state to the m = +/-1 magnetodonor states associated with the first subband, but transitions to the m = +/-1 states of the third subband are also apparent. The remaining photoconductivity peaks are explained by phonon-assisted impurity transitions.
Resumo:
This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.
Resumo:
The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.
Resumo:
Top-down models for the origin of ultra high energy cosmic rays (UHECR's) propose that these events are the decay products of relic superheavy metastable particles, usually called X particles. These particles can be produced in the reheating period following the inflationary epoch of the early Universe. We obtain constraints on some parameters such as the lifetime and direct couplings of the X-particle to the inflaton field from the requirement that they are responsible for the observed UHECR flux.
Resumo:
We investigate the potential of a future kilometer-scale neutrino telescope, such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dphi(nu)/dE(nu)similar toalphaE(nu)(beta), we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (alpha) as well as slope (beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.
Resumo:
We argue that the hypothesis of magnetic monopoles as being the highest energy cosmic ray events is unlikely. For reasonable values of the monopole mass both the observed spectrum and the arrival direction disagree with observation. Our conclusions could be evaded if (i) monopoles are accelerated in the extragalactic magnetic fields to energies much above the observed energies and (ii) the amount of energy that the monopole yields to the shower is small. (C) 1999 Elsevier B.V. B.V.
Resumo:
We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented. (c) 2005 Elsevier B.V. All rights reserved.