640 resultados para Heteropneustes fossils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the Okinawa Trough is a back-are basin in early spreading, modern submarine hydrothermal activity and minerallization have many characteristics which have aroused wide attention. Up to now three well-known hydrothermal venting areas are all located in the middle part of the trough, During two cruise investigations to map and sample the seafloor numbers of Calyptogena sp, shells were dredged at two sites in the northern trough with comparatively thicker crust and numerous submarine volcanoes. Based on the fact that Calyptogena sp, is only observed around the hydrothermal vents and lives on hydrothermal activities, it is predicted that there is the possibility of modern hydrothermal activities in the northern part of the trough. In this note, the shell is carefully characterized and the sample locations with possible hydrothermal activity are given. it Is pointed out that the research of biogenic fossils to trace hydrothermal activity changes in venting time, strength fluctuations, evolution In chemical compositions and so on should be stressed in the future in addition to the study of the ecological characteristics of hydrothermal organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sponges (phylum Porifera) had been considered as an enigmatic phylum, prior to the analysis of their genetic repertoire/tool kit. Already with the isolation of the first adhesion molecule, galectin, it became clear that the sequences of sponge cell surface receptors and of molecules forming the intracellular signal transduction pathways triggered by them, share high similarity with those identified in other metazoan phyla. These studies demonstrated that all metazoan phyla, including Porifera, originate from one common ancestor, the Urmetazoa. The sponges evolved prior to the Ediacaran-Cambrian boundary (542 million years ago [myr]) during two major "snowball earth events", the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr). During this period the ocean was richer in silica due to the silicate weathering. The oldest sponge fossils (Hexactinellida) have been described from Australia, China and Mongolia and are thought to have existed coeval with the diverse Ediacara fauna. Only little younger are the fossils discovered in the Sansha section in Hunan (Early Cambrian; China). It has been proposed that only the sponges possessed the genetic repertoire to cope with the adverse conditions, e.g. temperature-protection molecules or proteins protecting them against ultraviolet radiation. The skeletal elements of the Hexactinellida (model organisms Monorhaphis chuni and Monorhaphis intermedia or Hyalonema sieboldi) and Demospongiae (models Suberites domuncula and Geodia cydonium), the spicules, are formed enzymatically by the anabolic enzyme silicatein and the catabolic enzyme silicase. Both, the spicules of Hexactinellida and of Demospongiae, comprise a central axial canal and an axial filament which harbors the silicatein. After intracellular formation of the first lamella around the channel and the subsequent extracellular apposition of further lamellae the spicules are completed in a net formed of collagen fibers. The data summarized here substantiate that with the finding of silicatein a new aera in the field of bio/inorganic chemistry started. For the first time strategies could be formulated and experimentally proven that allow the formation/synthesis of inorganic structures by organic molecules. These findings are not only of importance for the further understanding of basic pathways in the body plan formation of sponges but also of eminent importance for applied/commercial processes in a sustainable use of biomolecules for novel bio/inorganic materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The largest mass extinction in the Phanerozoic happened at the end of the Permian. The microbialites formed in the extreme environments after the mass extinction has become a hotspot for geologists and paleontologists throughout the world. The dendroid microbialites that were described for the first time in 1999 from the Permian-Triassic boundary section at Laolongdong, Chongqing, have been studied by many geologists from China and overseas. Two important viewpoints about their origin have been proposed. Some researchers believed that they resemble Quaternary travertine shrubs in form, and may belong to microbialites. Some other researchers proposed that the dendroid structure is composed of clots formed by coccoidal cynaobacteria, and is microbialite. Our detailed survey on the section reveals that: (1) there is an interval of speckled “microbialite” in the section, and it underlies the dendroid “microbialite”, (2) the dendroid “microbialite” does not always have dendroid appearance; they are dendroid only in very local places; they are not dendroid in most places; for this reason, they are not comparable to recent tufa; (3) the volume of the dendroid structure greatly increases toward the top of the dendroid microbialite interval: accounting to 70% of the whole rock in the top part. This distribution pattern implies that the formation of this structure may be related to downward migration of the diagenetic fluid. Examination of thin sections reveals that the dendroid structure or point-like structure in the “microbialite” look as lighter areas in the thin sections and are composed of large blocky clear calcites containing scattered yellow dirty small calcite rhombi and irregular “points” of relict lime mudstone or wackestone or packstone. Their formation is by any one of the following two processes: (1) dissolution → filling of large blocky calcite; (2) dolomitization → dedolomitization → dissolution by meteoric fresh water → filling by large blocky calcites. It has been found that there are at least two sea-level falls during the P-T transition. As the sea level fall, the carbonate deposits came into supratidal environment, and suffered dolomitization caused by evaporative fluid or mixing water of sea water and meteoric water. Since the fluid migrated downward from the top of the deposits and in random pathway, the dolomitization formed dendroid or speckled dolomitic areas. As the deposits came into subaerial environments, the meteoric fresh water migrated along the dendroid or speckled dolomitic area with higher porosity, and dissolution happened, which caused the rock became spongy or alveolate. In later time, after the strata came into phreatic zone, large clear blocky calcites grew in and filled the pores in the spongy areas. The dendroid and speckled structure were formed in this way, rather than composed of clots formed by coccoid cyanobecteria. The microbial fossils in Laolongdong section include two types. The first is the tube-like cyanobecteria in middle Bed 3, which are generally less than 1 mm in length, taper toward one end, and are internally filled by microspars. They are straight or sinuous, with micritic wall 0.005~0.01 mm thick. Since this kind of microbial fossils are abundant in middle Bed 3, this rock belongs to microbialite. The second type occurs in Bed 5 and lower and middle Bed 6. They are irregular globular in shape, generally 0.2 ~ 0.5 mm in size, with several outward progresses, and internally filled by one layer of needle-like calcite cements on the wall and the large blocky calcite in the inner space. According to their shape and preservation way, it is inferred that this kind of fossils were formed from some kind of bacterial colony. The bacterial colony may be cuticle in composition, since it has some hardness as it is indicated by its resistance to deposit loading. These organisms discomposed during diagenetic time, and formed good porosity. In later diagenetic time, these pores were firstly cemented by needle-like calcites and later filled by large blocky calcites. So, the bacterial colony promoted the formation of dendroid and speckled structures. However, they did not always form such structures. On the other hand, even though no bacterial colony or other microbes or any kind of fossils were present, dendroid or speckled structures can form. Bed 4 of Laolongdong section contains abundant gastropods but no microbial fossils, and is not microbialite, even though it is speckled. The top of Bed 6 is dendroid, but contain no microbial fossils, and is not micrbialite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Badain Jaran Desert lies on the Alashan Plateau in western Inner Mongolia. Because of huge dunes, permanent lakes and on the northern fringe of the Asian summer monsoon, the Badain Jaran Desert has been drawing attentions of many experts. And they have made great progress in dune’s geomorphology, botany in desert, paleoclimate change and other study areas. We analyzed environmental isotope and ion chemistry in lakes and groundwater of the desert and southeastern area, and collected some other evidences from 14C dating, fossils and archeology. According to chemical analysis, we discuss the difference spatial character of ion chemistry and environmental isotope in lakes and groundwater of the desert and adjacent. Contrasting with ion chemistry and isotope results in other arid area, we argue origin of groundwater and lakes in the desert area, and get a preliminary understanding of desert lakes’ evolution during Holocene. Some main conclusions were drawn as follows: 1. It has a obvious difference in hydrophysical parameters between lakes and groundwater in the desert and margin. 2. The results of ion analysis show that Na+ and Cl- are dominant in most lakes of the desert. Meanwhile, Na+ 、Cl- and HCO3- are dominant in groundwater of the desert and adjacent, and alsoMg2+、Ca2+、and NO3- have more percentage than in lakes. 3. Owing to different solubilities, the conten of main ions in water varies with the content of TDS. Whereas the content of TDS is over 100 g/L, the content of SO42-、HCO3-、Mg2+and Ca2+ in lakes descend. 4. The result of isotope analyzing indicate the lakes and groundwater in southeast desert have a similar vaporing trend with the groundwater in the southeast margin of the desert. It imply there would have some kind of contact between groundwater in margin and lakes of southeast desert. 5. Contrasting with isotope results of groundwater in other arid area, it show that the groundwater in the desert and Yabulai area should be phreatic water which have a low water table. Therefore, we conclude that the groundwater in southeast part of the desert and southern margin mainly are recharged by precipitation of local abundant rainfall and groundwater of low mountain of southern area. 6. And all of these evidences, which are different from salinity, the content of CO32- and geological data, show that the bigger northern lake group and southeastern lake group in the desert have different groundwater replenishing system because a fold belt lie between of the two group lakes and obstruct them in landform. and HCO3- 7. The 14C dating results of fossil and lacustrine deposits show that there maybe have a wider range of shoreline during early and middle Holocene than today. 8. By the discovery and study of some pieces of pottery and fine stoneware, we preliminary conclude that there maybe have some certain amount of early human activities in the Badain Jaran Desert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linxia Basin, situated in the northeast belt of the Tibetan Plateau, is a late Cenozoic depression basin bounded by the Tibetan Plateau and the Chinese Loess Plateau. The Cenozoic deposition, spanning over 30Ma, in which very abundant mammal fossils were discovered, is very suitable for study of uplift processes and geo-morphological evolution of the Tibetan Plateau. The Longdan section (35°31′31.6″N,103°29′0.6″E) is famous for the middle Miocene Platybelodon fauna and the late Miocene Hipparion fauna for a long time and is also one of the earliest known places for wooly rhino, which lies on the east slope of Longdan, a small village of township Nalesi in the south of the Dongxiang Autonomous County, Linxia Hui Nationallity Autonomous Prefecture. The Longdan mammal fauna was discovered at the base of the Early Pleistocene loess deposits at Dongxiang, where the lithology is different from the typical Wucheng Loess on the Chinese Loess Plateau. The rich fossils contain many new species and the major two layers of fossils are in the loess beds. Geologically the fossiliferous area is located in the central part of the Linxia Cenozoic sedimentary basin. Tectonically the Linxia Basin is an intermountain fault basin, bordered by the Leijishan major fault in the south and the north Qinling and Qilianshan major faults in the north. The section is 51.6m thick above the gravel layer, including the 1.6m Late Pleistocene Malan Loess on the top and the other loess-paleosol sequences in the middle of the section. The base of the section is the Jishi Formation, consisting of gravel layer of 13 ~ 17m thick. In this study, 972 bulk samples were collected with an interval of 5cm and other 401 orientied samples were taken with a magnetic compass. In the laboratory, the paleomagnetism, medium grain size, susceptibility, color, micromorphology, anisotropy of magnetic susceptibility were analyzed. From the stratigraphic analysis, the Longdan section from the top 0.3m to the bottom 51.6m, containing 5 normal polarities (N1-N5) and 5 reversal polarities (R1-R5). The paleomagnetic results show N3 is the Olduvai subchron in the middle of the Matuyama chron, and then the chronology of the Longdan mammal fauna is constructed along the section. The Matuyama-Gauss boundary is 45m and N5 enters Gauss chron. The Olduvai subchron with the age of 1.77 ~ 1.95Ma is found just in the upper fossiliferous level of Longdan mammal fauna. Taking the deposit rate of the section into account, the geological age of the upper fossiliferous level of Longdan mammal fauna is estimated to be about 1.9Ma. The lower fossiliferous level is just below the Reunion subchron and its age is estimated to be 2.25Ma. In addition, anisotropy of magnetic susceptibility of the loess-paleosol and other climatic indexes were used for discussing the late Cenozoic paleoenvironmental changes at Longdan, from which the Longdan area should have been an area of predominantly steppe the same as the Longdan mammal fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope compositions of land snail shells have a great potential as an indicator of paleoclimatic and paleoenvironmental changes. However, some key issues, such as the relationship of carbon isotope between snail food and local vegetation, and the uncertainty of the dominant factors about snail body fluid changes in oxygen isotope composition, remain less well known, strongly limiting shell isotopic application. In this study, we measure the stable isotope compositions on the shells of both live snails and fossils collected from the Chinese Loess Plateau and a loess sequence at Mangshan, Xingyang, respectively. Based on the analyses, the association of the stable isotope compositions of land snail shells with their growing seasons is investigated. In addition, the climatic and environmental significances of isotopic differences among several snail species are discussed. The main results and conclusions are presented as follows: 1. δ18O values for the shell lip samples of Bradybaena ravida redfieldi range from -6.79‰ to -1.92‰, and parallels to the monthly changes of local rain water δ18O, temperature and humidity. The compatibility of shell lip δ18O with monthly modeled shell δ18O indicates that the shell lip δ18O changes are mainly resulted from the 18O variations of rain-water. The shells of a land snail growing in spring could be enriched in 18O, and those growing in summer depleted in 18O. 2. Carbon isotope compositions of snail shells are controlled by their diet, which is affected by the relative proportion of C3 to C4. There are some differences in carbon isotopic compositions among different snail species, especially between P. orphana and V. tenera or P. aeoli. Shell δ13C for P. orphana is the most positive with an average of -5.88 ± 2.54 ‰. The C4 plant fraction of the food for “cold-aridiphilous” taxa, P. aeoli and V. tenera, is distinctly lower than that for “thermo-humidiphilous” taxa, P. orphana, indicating that summer is likely to be the main active season of P. orphana and spring of P. aeoli and V. tenera. Therefore, some discrepancy of carbon isotopic compositions among different species may be related to snail active season. 3. δ13C values among different species have a certain degree of positive correlation, which may be influenced by local vegetation ecosystem. δ13C value of the snail shells (especially P. orphana) shows an eastward increasing trend and consists with the variations of C4 plants biomass in Loess Plateau. The result shows that the carbon isotope in local vegetation ecosystem is one of the main factors influencing δ13C values of snail food. Therefore, both carbon isotopes of local vegetation ecosystem and snail active season contribute to the carbon isotopic differences among different snail species and in different areas. 4. δ13C values of living snail shells and soil organic matter have a positive correlation with each other, which further supports the view that carbon isotope in local vegetation ecosystem is one of the main factors influencing δ13C values of snail food. However, the range of δ13C values of snail food for various species in response to carbon isotope in local vegetation ecosystem is different. It is suggested that 13C enrichment of snail shells relative to local vegetation ecosystem has a potential to indicate snail active season and the degree of climate temperature and humidity. 5. There is a significant negative correlation between carbon and oxygen isotopic compositions of living snail shells in Loess Plateau. This result further supports that snail active season can be inferred based on the shell carbon and oxygen isotopic compositions. Moreover, there are some positive correlations between mean annual temperature and differences of shell δ13C values ( 13CV. tenera-P. orphana) and that of δ18O values ( 18OV. tenera-P. orphana) for P. orphana, a typical “thermo-humidiphilous” taxa, and V. tenera, a typical “cold-aridiphilous” taxa, respectively. It shows that  13CV. tenera-P. orphana and  18OV. tenera-P. orphana may have a potential to indicate mean annual temperature or the length of biological growing season. 6. Stable isotopes of land snail shell in the Mangshan loess sequence show that the shell δ18O value of “cold-aridiphilous” taxa V. tenera is more positive than “thermo-humidiphilous” taxa P. orphana and δ13C value of the former is more negative than the latter. In addition, the shell δ18O value of V. tenera varies significantly in different period. During the last glacial maximum, its δ18O value with an average of -7.89 ‰ is more negative than that (-5.88 ‰) from the last deglaciation to the early Holocene. This phenomenon indicates that its growing season during different period is significantly different. It tends to grow in summer in last glacial maximum. With climate warming, it prefers growing in spring with relatively low temperature. While the shell δ18O value of P. orphana varies in a little range, which shows that its activity season is shorter and mainly in summer. These results further support that the change of the snail growing season is one of the main factors of differences of carbon isotopic compositions among different snail species and varies with time. Furthermore, it is consistent that changes in magnetic susceptibility and trend of differences of shell δ18O values and δ13C values respectively between the two snail fossils. It is further testified that 13CV. tenera-P. orphana and  18OV. tenera-P. orphana may have a potential to indicate mean annual temperature or the length of biological growing season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High resolution geochemical analysis of Ediacaran Doushantuo Formation deposits in eastern Gorges area, including carbon and sulfur isotope compositions, trace elements, rare earth elements, and so on, show a whole panorama of the oceanic environment in Ediacaran Doushantuo Formation. The deposits of Doushantuo II recorded consistent δ13Corg values and variable δ13Ccarb values, which suggets that it is strongly redox stratified in Doushantuo ocean, and there is a large DOC reservior in the deep ocean. The redox state of Doushantuo ocean in Yangtze area was not steady. The movement of chemocline was concerned with the transgression and/or regression. During the transgression, raising sea level and upwelling with anoxic deep water would cause the ocean anoxic; during the regression, declining sea level and weathered sulfate input would cause the suface ocean becoming oxic. The oxidations of this DOC reservior would caused negative δ13C excurions in Doushantuo Formation. Comparing with oceanic redox states and fossils productivity, we found that the stratum with high biologic productivity and diversity did not indicated oxic conditions. In the opposite, these stratum recorded anoxic conditions. We suggeste that it would be relatived to burial and preservation of fossils, because anoxic conditions are in favor of burial and preservation of fossils. It is proved that methane seep occurred at the base of Duoshantuo cap carbonate. However, comparing cap carbonate with seep carbonate, we found that oxidation of methan and the post-diagenesis could not derictely result in cap carbonate deoposition. Cap carbonate would be derived from the high level CO2 in atomosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Livingston Island, the second island of South Shetland Island, constains Mesozoic-Cenozoic basement, Mesozoic-Cenozoic volcanic sequences, plutonic intrusions and post-subduction volcanic rocks, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The sedimentary sequence is named the Miers Bluff Formation (MBF) and is interpreted as turbidite since the first geological study on South Shetland Islands, and is interpreted as turbidite. It base and top are not exposed, but a thickness of more than 3000m has been suggested and seems plausible. The turbidite is overlain by Mid - Cretaceous volcanic rocks and intruded by Eocene tonalites. The age of the Miers Bluff Formation is poorly constrained Late Carboniferous -Early Triassic. Sedimentary Environment, tectonic setting and forming age of sedimentary rocks of the Miers Bluff Formation were discussed by means of the methods of sedimentology, petrography and geochemistry, combinig with the study of trace fossils and microfossil plants. The following conclusions are obstained. A sedimentary geological section of Johnsons Dock is made by outside measuring and watching, and then according the section, the geological map near the Spanish Antarctic station was mapped. Four pebbly mudstone layers are first distinguished, which thickness is about 10m. The pebbly mudstone is the typical rock of debris flow, and the depostional environment of pebbly mudstone may be the channel of mid fan of submarine fan. The sedimentsry structural characteristics and size analysis of sandstones show the typical sedimentary feature of turbidity flow and the Miers Bluff Formation is a deep-water turbidite (include some gravity-flow sediments). The materials of palaeocurrents suggest the continental slope dip to southeast, and indicate the provenance of turbidity sediment in the northwest area. By facies analysis, six main facies which include seven subfacies were recognized, which are formed in mid-fan and lower-fan of submarine, meanwhile, the sedimentary features of each facies and subfacies are summarized. The study of clastic composition, major elements, trace elements and rare earth elements indicates the forming setting of the Miers Bluff Formaton is active continental margin and continental island arc and the provenance is dissected magmatic arc which main composition is felsic gneiss. Many trace fossils of the whole succession were found in the turbidites of the Miers Bluff Formation. All these trace fossils are deep sea ichnofossils. There are fifteen ichnogenus, sixteen ichnospecies. Moreover, a new trace fossil was found and a new ichnogenus and new ichnospecies was proposed - Paleaichnus antarctics ichnogen, et ichnosp, nov.. Except the new ichnogenus and ichnospecies, others had been found in deep-sea flysch turbidites. Some are in mudstone and are preserved in the cast convex of overlying sandstone sole, they formed before turbidity flows occurred and belong to the high-different Graphoglyptida of fiysch mudstone. Others as Fucusopsis and Neonereites are preserved in sandstones and stand for trace assemblages after turbidity sedimentation. These trace fossils are typical members of abyssal "Nereites" ichnofacies, and provide for the depositional environment of the Miers Bluff Formation. Fairly diverse microfossil plants have been recovered from the Miers Bluff Formation, Livingston Island, including spores, pollen, acritarchs, wood fragments and cuticles. Containing a total of about 45 species (forms) of miospores, the palynofiora is quantitatively characterized by the dominance of non-striate bisaccate pollen, but spores of pteridophytes and pollen of gymnosperms are proportionate in diversity. It is somewhat comparable to the subzone C+D of the Alisporites zone of Antarctica, and the upper Craterisporites rotundus zone and the lower Polycingulatisporites crenulatus zone of Australia, suggesting a Late Triassic (possibly Norian-Rhaetian) age, as also evidenced by the sporadic occurrence of Aratrisporites and probable Classopollis as well as the complete absence of bisaccate Striatiti. The parent vegetation and paleoclimate are preliminarily deduced. At last, the paper prooses the provenance of sedimentary rocks of the Miers Bluff Formation locates in the east part to the southern Chile(or Southern South American). In the Triassic period, contrasting with New Zealand, Australia and South American of the Pacific margin of Gondwanaland, the Miers Bluff Formation is deposited in the fore-arc basin or back-arc basin of magmatic arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Asia, the significant environment changes in Cenozoic include: uplift of Himalayas and Tibetan Plateau, formation Asian monsoon system, Aridification in Central Asia. One of major advances in recent studies of eolian deposit on the Loess Plateau is the verification of the eolian origin for the Late Tertiary Hipparion Red-Earth (also called red-Clay) underlying the Quaternary loess. Thus, the Late Tertiary eolian deposit, which has been proven a nearly continuous terrestrial record and sensitive to climate change, provides us an important archive to understand these above Cenozoic environment events. The deposit in eastern Loess Plateau has been extensively studied, while the property and age of deposit underlying the Quaternary loess in western plateau remains unclear. In this paper, detail investigations were made on the Sedimentology, geochemistry of Longxi section, a typical section in western Loess Plateau, to address its origin, and on micromammalian fossils and magnetostratigraphy to address its age. The main conclusions are presented as following: 1. The sedimentological and geochemical properties in Longxi section are highly similar to typical Quaternary eolian deposit in Loess Plateau. Nearly 100 paleosols are recognized in the field, and the grain size are very fine with the median grain size centered at 4~7μm. There is a good agreement of both major and trace element compositions between Longxi deposit and the Quaternary Loess. The REE distribution patterns of Longxi deposit and the Quaternary loess are remarkably similar in shape, with enrichment LREE and fairly flat HREE profiles and clear negative Eu anomaly. The mangnetic minerals in Longxi deposit are mainly magnetite, hematite and maghematite, which are similar to those of the Hipparion Red-Earth and Quaternary Loess. The major difference among them is that the samples from Longxi section contain more hematite. The characteristics of anisotropy of magnetic susceptibility (AMS) in Longxi deposit is highly consistent with that of Quaternary loess, while values of the major AMS parameters, e.g. anisotropy degree, magnetic foliation and lineation, are significantly lower than those of fluvial and lake deposits. These evidences indicate an eolian origin for the sediment. 2. An investigation of micromammalian fossils was firstly carried out for determining the approximate age of the sequence because of lack of materials for accurate isotope dating. Three fossil assemblages were obtained which indicate a chronological range from the Middle Miocene to Late Miocene. The magnetostratigraphical study suggests that it is a near continuous terrestrial record for the period from 13.23 to 6.23 MaB.P. The obtained chronology is highly consistent with fossils assemblages. This section is the oldest eolian deposit presently known in Loess Plateau. 3. The magnetic susceptibly value is high in paleosols than in surrounded weak-weathered layers, which suggests that it may be a climate index on orbital time scale. While it cannot be used as a proxy to address the long-term, change of climate on tectonic time scale, as content of the magnetic minerals is highly variable in different parts of the section. 4. The appearance of Middle Miocene eolian deposit in the Loess Plateau marks the strengthening of aridification of Central Asia. The high degree of similarity between the geochemical properties of Longxi eolian deposit, Hipparion Red-Earth and Quaternary loess a suggests that a rather similar source provenance. The dust accumulation rate (DAR) of Longxi section, which is widely used as a proxy to document the aridity in source areas in marine and terrestrial record studies, recorded the aridity condition in northwestern China over a period from Middle Miocene to Late Miocene. The DAR of the section shows that the continent aridity remains moderate and relative stable over that period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of biogenic proxy of tropical and subtropical regions provides important evidence about the process and history of vegetation and environmental changes, and is of globally importance for understanding the dynamic mechanism of paleoclimatic and paleoenvironmental changes. The sediments from the Huguangyan Maar lake in Guangdong Province offer a continuous high-resolution record of the past 55 ka about environmental and vegetational changes. The studies of chronology, and physical, chemical environmental proxies have provided much important information about the paleoenvironmental and paleoclimatic histories. The phytolith, a new biogenicl proxy, has been used to determine the nature and types of plants in this area since the last 55 ka. This study presents a preliminary result about the characteristics of phytolith shapes, the variations of the fossils assemblages, and their significance for environmental changes. Moreover, the author probes the process of special specie evolution and their relationship to climatic parameters. The history of fire has been reconstructed based on the variations in charcoals. The main results and conclusions include: 28 types of phytoliths from 233 samples have been identified. Their environmental meanings are investigated in detail. Based on the variations in phytolith associations, the history and process of climatic and environmental changes in the last 55 kaBP have been established for this region. Climatic changes experienced eight intervals during this period, showing the variations of hot-humid to cool-try climate in the ten thousands years scale, and a shorter dry-hot climate condition in millennial scale. The history of palm plant has been established in this region. Two peaks appeared from 55-39 ka and since the Holocene. Plants in Bambusoideae have been growing in this area all the period, representing the impact of the East Asian summer monsoon. Bamboo plants have similar tendency in their abundance to palm plants, but with a lag of 1-2 ka BP. Panicoideae plants, the representative of C4 plants, have 6 flourishing periods occurred at 54.5, 44, 41.5, 32.5, 14, and 10 kaBP, respectively, reflecting 6 times short-term arid events. Charcoal record from the Huguang Marr lake reveals the history of nature fire, that mostly happened in dry period of last glacial from 55-10 kaBP, centered at 50-45, 40-35, 30-25, and 20-15kaBP, showing about a cycle of 10,000 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, 260 mollusk fossil samples from a Red Clay sequence at Xifeng, Gansu province, in the northern China were analyzed quantitatively. 12 fossil species and four fossil zones have been identified. Three main ecological groups were determined based on ecological requirement of each mollusk taxon. According to fossil composition and succession of three ecological groups, the author discussed the origin and sedimentary environment of the red clay deposits, and the process of ecological environmental changes as well as the variations of the East Asia monsoons during 6.2-2.4 Ma in the Loess Plateau. A preliminary study on periodicity of paleoclimatic changes was also conducted by using spectral analysis method. The main results and conclusions are presented as follows:A continuous land mollusk fossil sequence of 6.2-2.4 Ma from Xifeng Red Clay Formation has been established, which provided a basic data for studying the environmental changes during late Miocene to Pliocene.The study of composition and preservation condition of mollusk fossils reveals a terrestrial in situ ecological population in the Red Clay Formation. All of identifiable mollusk species are composed of terrestrial taxa, which support the view that the Red Clay is an eolian origin, similar to the overlying Quaternary loess deposits.The mollusk record reveals the processes of ecological and environmental changes during 6.2-2.4 Ma in the Loess Plateau. Climatic changes experienced cold and dry from 6.2-5.4 Ma, warm and wet during 5.4-4.5 Ma, mild and moderate from 4.5-3-4 Ma, to rapid cooling and drying after 3.4 Ma. From '5.4- 2.4 Ma, climate was stepwise cooling. The cooling trend is in good agreement with a general1 0global cooling trend during this period, as documented by marine 5 0 records.4. Three remarked ecological shifts took place in mollusk assemblages from 6.2-2.4 Ma, focused on about 5.4, 4.5 and 3.4 Ma. The warming shift around 5.4 Ma was probably related to the rising of the global temperature. The cooling shifts around 4,5 and 3.4 Ma however might be closely linked to the uplift of Tibet Plateau and the development of Northern Hemisphere ice sheet.The succession in mollusk ecological groups also recorded the variability of the East Asian winter and summer monsoon. The winter monsoon dominated two periods from 6.2-5.4 Ma and from 3.4-2.4 Ma, while the summer monsoon was strong during 5.4-4.5 Ma. The variations in winter and summer monsoons were in phase during 4.5-3.4 Ma. Monsoon regimes changed with the duration about 1 Ma, which roughly corresponds to the cycle driven by tectonic activity on the time scales of ICP-IO7 years. In addition, mollusk fossils recorded the large amplitude and high frequency fluctuations overlapped on 105-107 years climate cycle.The maximum entropy spectral analysis and filter-band analysis of total mollusk individuals and three typical ecological groups suggest that the climate changes controlled mainly by solar insolation had periods about 70 ka and 40 ka on the time scales of 105 during late Miocene-Pliocene. Climatic periodicity intensified from 4.0 Ma, which reflected strengthened forcing by high latitude ice volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yuanmou area lies on the southeastern edge of the Tibetan Plateau, the middlesegment of Yunnan-Sichuan North-South Extending Tectonic Belt and the upper reaches of the Yangztze River, which is renowned for its thick late Cenozoic fluvial-lacustrine sequences that yield rich mammalian fossils including hominoid and early human. The sediments provides great potentials for understanding the relationships between uplift of the Tibetan Plateau, evolution of hominoids and other mammalian and evolution and formation of basins in Southwest China since late Miocene. However, lithostratigrphic and chronologic views on them are controversial and hinder further discussion of the relationships of them. To this end, we selected the Baozidongqing section and the Dapoqing section to carry out systematic lithostratigraphic, magnetostratlgraphic and environmental magnetism researches in this area.The Baozidongqing section was dated to about 10.95-7.17 Ma. The age estimation of the topmost hominoid-bearing layer was about 7.43-7.17 Ma. Rock magnetic results show that the dominant magnetic carrier is hematite, with minor amount of magnetite. Both the composition and concentration of magnetic minerals strongly correlate with the lithostratigraphy, indicating that Yuanmou basin is characterized by alternating of long-term torrid-humid climate and short-term dry-hot climate. But the pattern of these short-term hot-dry events, including both the lasting time and the frequency of their occurrence dramatically changed since -8.1 Ma. Our results infer that the drying process of the Asian west interior and a significant uplift of the Tibetan Plateau would have probably caused jointly the extinction of hominoids, or the emigration of hominoids from Yuanmou to adjacent relatively torrid-humid areas.The strata between the upper of the Dapoqing section, the Niujianbao Hill and Shangnabang area can be linked by three mark layers of conglomerate, which is rather continuous and coherent than physical disturbance by new tectonic activities. Rock magnetic studies indicate that hematite is the main magnetic carriers. The section is dated back to about 2.8-1.37 Ma. Its paleocurrent flowed northeastward, which was a close and stagnant river and swamp environment about 2.2 Ma ago. Then it ran northwestward and turned into an open overflown and braid river sedimentary face during 2.2 to 1.57 Ma. Since 1.57 Ma, the paleocurrent flowed intensely northwestern and about 1.37 Ma ago, it ended the basically continuous fluvial-lacustrine deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ammonites Lewesiceras peramplum Mantell and ?Lewesiceras sp. are reported from the Upper Cretaceous in the Nysa Kłodzka Graben; they date from the Middle Turonian and ?Coniacian, respectively. The Middle Turonian limestones of the Stara Bystrzyca quarry contain an abundant assemblage of inoceramids (Inoceramus cuvieri Sowerby and I. lamarcki Parkinson) and other bivalves, including oysters, as well as brachiopods and trace fossils. Micropalaeontological data show the presence of foraminifers and siliceous sponge spiculae, bryozoans, ostracods and fragments of bivalves and gastropods. The Middle Turonian calcareous deposits belongs to the upper part of the Inoceramus lamarcki Zone (late Middle Turonian) and were deposited on a shallow, subtidal offshore shelf. They overlie the Middle Turonian Bystrzyca and Długopole Sandstones, which represent foreshore-shoreface delta deposits. The fossil assemblage suggests a moderate- to low-energy, normal-salinity environment with occasionally an oxygen deficit.