973 resultados para Hemilabile ligand
Resumo:
Fas ligand (FasL, Apo-1L) is a member of the tumor necrosis factor protein family and binding to its receptor (Fas, Apo-1, CD95) triggers cell death through apoptosis. Ligand expression is restricted to cells with known cytolytic activity and found on hematopoietic cells of the T cell and natural killer lineage. Here we provide evidence that B lymphocytes can express FasL. Flow cytometric analysis revealed that FasL is expressed on the surface of B cells upon stimulation with either lipopolysaccharide or phorbol 12-myristate 13-acetate/ionomycin. FasL expression on activated B cells was confirmed by western blot and reverse transcriptase polymerase chain reaction analysis. FasL on B cells is functional since lipopolysaccharide-activated B lymphocytes derived from wild type, but not from gld mutant mice, were able to kill Fas-sensitive target cells. Our data suggest that the Fas system may contribute to the control of B cell homeostasis.
Resumo:
The role of the bridging ligand on the effective Heisenberg coupling parameters is analyzed in detail. This analysis strongly suggests that the ligand-to-metal charge transfer excitations are responsible for a large part of the final value of the magnetic coupling constant. This permits us to suggest a variant of the difference dedicated configuration interaction (DDCI) method, presently one of the most accurate and reliable for the evaluation of magnetic effective interactions. This method treats the bridging ligand orbitals mediating the interaction at the same level than the magnetic orbitals and preserves the high quality of the DDCI results while being much less computationally demanding. The numerical accuracy of the new approach is illustrated on various systems with one or two magnetic electrons per magnetic center. The fact that accurate results can be obtained using a rather reduced configuration interaction space opens the possibility to study more complex systems with many magnetic centers and/or many electrons per center.
Resumo:
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.
Resumo:
Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.
Resumo:
SUMMARY BACKGROUND: P-selectin glycoprotein ligand 1 (PSGL-1) is a major selectin ligand, mediating leukocyte rolling along inflamed vascular wall. It is a mucin-like homodimer composed of a N-terminal domain which binds selectins, followed by 14-16 decameric repeats (DR), a transmembrane domain and a cytoplasmic tail, which may be involved in regulating leukocyte rolling and in generating intracellular signals, through its binding to moesin and Syk. P- and L-selectin binding is dependent on core-2 O-glycosylation and tyrosine sulfation of PSGL-1 N-terminus. However, a minor part of E-selectin-mediated rolling is dependent on N-terminal O-glycans; additional binding sites may thus be involved. In this project, we studied whether (1) PSGL-1 DR and (2) PSGL-1 cytoplasmic residues which bind moesin, were also involved in the regulation of selectin-dependent rolling. METHODS: Several mutated cDNAs were obtained: (1) PSGL-1 DR were either deleted, or substituted by platelet GPlba macroglycopeptide, (2) Ser-336, -348, Lys-337 and Arg-338 were mutated to alanine; moreover, truncation mutants retaining only 6 or 2 cytoplasmic residues were also generated. Transfected CHO expressing mutant PSGL-1 were tested for their ability to bind soluble selectin chimeras and to support selectin-dependent rolling under flow conditions. RESULTS: (1) Deletion of the DR had a dramatic effect on P- and L-selectin-dependent cell recruitment and rolling stability, which could only partially be compensated for, by GPlba substitution. In addition, we observed that DR create a binding site for E-selectin and thus support PSGL-1-dependent rolling. (2) Flow assays revealed that the moesin-binding site, in particular Ser-336, plays a crucial role in regulating the recruitment, velocity and rolling stability of PSGL-1-expressing cells on P- and L-selectin. CONCLUSIONS: Data presented here highlight the structure -function relationship of PSGL-1 DR. Moreover, they reveal a crucial role for the moesin-binding residues in regulating P-and L-selectin-dependent rolling. RÉSUMÉ CONTEXTE: PSGL-1 (P-selectin glycoprotein ligand 1) est un ligand majeur des sélectines permettant le roulement des leucocytes le long de la paroi vasculaire enflammée. C'est un homodimère de type mucine, composé d'un domaine N-terminal liant les sélectines, suivi de 14-16 répétitions décamèriques (RD), d'un domaine transmembranaire et d'une queue cytoplasmique qui pourrait être impliquée dans la régulation du roulement leucocytaire et la génération de signaux intracellulaires, via sa liaison à la moésine et à Syk. La liaison à la Pet à la L-sélectine dépend de la présentation par le N-terminus de PSGL-1 de O-glycans sur des structures core-2 et de tyrosines sulfatées. Cependant, une fraction mineure du roulement médié par la E-sélectine dépend des O-glycans N-terminaux; des sites de liaisons supplémentaires pourraient donc être impliqués. Dans ce projet, nous avons étudié si (1) les RD de PSGL-1 ainsi que (2) les résidus cytoplasmiques liant la moésine, étaient impliqués dans la régulation du roulement dépendant des sélectines. MÉTHODES: Plusieurs ADN codant des formes mutées de PSGL-1 ont été obtenus: (1) Les RD de PSGL-1 ont été soit ôtées, soit remplacées par le macroglycopeptide de la GPlba plaquettaire, (2) les Ser-336, -348, la Lys-337 et l'Arg-338 ont été mutées en alanine; par ailleurs, des mutants tronqués ne retenant plus que 6 ou 2 résidus cytoplasmiques ont également été générés. Des CHO transfectées exprimant PSGL-1 muté ont été testées pour leur capacité à lier des sélectines chimériques solubles et à soutenir un roulement dépendant des sélectines dans des conditions de flux. RÉSULTATS: (1) La perte des RD a eu un effet dramatique sur le recrutement cellulaire et la stabilité de roulement dépendant des P- et L-sélectine, qui n'a pu être que partiellement compensé par la substitution par la GPlba. De plus, nous avons observé que les RD forment un site de liaison pour la E-sélectine et soutiennent ainsi le roulement dépendant de PSGL-1. (2) Les tests de flux ont révélé que le site de liaison à la moésine, notamment la Ser-336, joue un rôle crucial dans la régulation du recrutement, de la vitesse et de la stabilité du roulement des cellules exprimant PSGL-1 sur les P- et L-sélectine. CONCLUSIONS; Les données présentées ici ont permis d'éclaircir la relation structure -fonction des RD de PSGL-1. Par ailleurs, elles révèlent un rôle crucial pour les résidus liant la moésine dans le roulement dépendant des P- et L-sélectine. RÉSUMÉ DESTINÉ À UN LARGE PUBLIC Pour accomplir ses fonctions, le sang circule sur un réseau de 96'000 kilomètres; ainsi, il approvisionne les cellules de l'organisme en énergie, il transporte diverses substances, il assure la défense contre les pathogènes et il participe à la régulation de la température corporelle. Le sang contient plusieurs types de cellules: la grande majorité sont les globules rouges, auxquels il faut ajouter les plaquettes (dont le rôle est de colmater les lésions vasculaires) et les globules blancs (leucocytes) qui, bien que présents en très faible quantité (moins de 0.01 %), jouent un rôle crucial en cas d'infection ou d'inflammation. Une attaque par un pathogène provoque plusieurs changements (rougeur, chaleur, gonflement, douleur), qui sont des manifestations de l'inflammation. Pour atteindre l'agent infectieux, des globules blancs spécialisés (les granulocytes) doivent quitter la circulation sanguine. Afin de faciliter leur capture, les vaisseaux sanguins vont exprimer des protéines telles que les sélectines, qui sont reconnues par une protéine leucocytaire appelée PSGL-1 (P-selectin glycoprotein ligand 7). L'interaction des sélectines avec PSGL-1 soutient le roulement du globule blanc le long de la paroi vasculaire, à une vitesse très inférieure à celle du flux sanguin. Ce roulement conduit à l'activation du globule blanc par des molécules de l'inflammation, permettant son adhésion ferme, puis son arrêt. Finalement, le granulocyte va migrer à travers la paroi du vaisseau pour atteindre et éliminer les causes de l'inflammation. L'adhésion est un processus intéressant à caractériser, car outre l'inflammation, il est également impliqué dans l'artériosclérose, l'infarctus, la métastatisation et la thrombose. Dans ce travail, nous nous sommes intéressés à définir les rôles des différents domaines de PSGL-1 dans la régulation de son interaction avec les sélectines. En effet, en plus de son extrémité extracellulaire de haute affinité pour les sélectines, PSGL-1 est composé de plusieurs séquences répétées hautement glycosylées et d'une courte région intracellulaire, dont les fonctions n'avaient pas été étudiées auparavant. En créant des formes mutées de PSGL-1, nous avons pu montrer qu'un roulement efficace des leucocytes nécessite la présence des régions répétitives et du domaine intracellulaire au complet.
Resumo:
Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions.
Resumo:
PURPOSE: Local breast cancer relapse after breast-saving surgery and radiotherapy is associated with increased risk of distant metastasis formation. The mechanisms involved remain largely elusive. We used the well-characterized 4T1 syngeneic, orthotopic breast cancer model to identify novel mechanisms of postradiation metastasis. EXPERIMENTAL DESIGN: 4T1 cells were injected in 20 Gy preirradiated mammary tissue to mimic postradiation relapses, or in nonirradiated mammary tissue, as control, of immunocompetent BALB/c mice. Molecular, biochemical, cellular, histologic analyses, adoptive cell transfer, genetic, and pharmacologic interventions were carried out. RESULTS: Tumors growing in preirradiated mammary tissue had reduced angiogenesis and were more hypoxic, invasive, and metastatic to lung and lymph nodes compared with control tumors. Increased metastasis involved the mobilization of CD11b(+)c-Kit(+)Ly6G(high)Ly6C(low)(Gr1(+)) myeloid cells through the HIF1-dependent expression of Kit ligand (KitL) by hypoxic tumor cells. KitL-mobilized myeloid cells homed to primary tumors and premetastatic lungs, to give rise to CD11b(+)c-Kit(-) cells. Pharmacologic inhibition of HIF1, silencing of KitL expression in tumor cells, and inhibition of c-Kit with an anti-c-Kit-blocking antibody or with a tyrosine kinase inhibitor prevented the mobilization of CD11b(+)c-Kit(+) cells and attenuated metastasis. C-Kit inhibition was also effective in reducing mobilization of CD11b(+)c-Kit(+) cells and inhibiting lung metastasis after irradiation of established tumors. CONCLUSIONS: Our work defines KitL/c-Kit as a previously unidentified axis critically involved in promoting metastasis of 4T1 tumors growing in preirradiated mammary tissue. Pharmacologic inhibition of this axis represents a potential therapeutic strategy to prevent metastasis in breast cancer patients with local relapses after radiotherapy. Clin Cancer Res; 18(16); 4365-74. ©2012 AACR.
Resumo:
The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumor necrosis factor receptor superfamily, and all primary viral strains tested to date use CD134 for infection. We examined the expression of CD134 in the cat using a novel anti-feline CD134 monoclonal antibody (MAb), 7D6, and showed that as in rats and humans, CD134 expression is restricted tightly to CD4+, and not CD8+, T cells, consistent with the selective targeting of these cells by FIV. However, FIV is also macrophage tropic, and in chronic infection the viral tropism broadens to include B cells and CD8+ T cells. Using 7D6, we revealed CD134 expression on a B220-positive (B-cell) population and on cultured macrophages but not peripheral blood monocytes. Moreover, macrophage CD134 expression and FIV infection were enhanced by activation in response to bacterial lipopolysaccharide. Consistent with CD134 expression on human and murine T cells, feline CD134 was abundant on mitogen-stimulated CD4+ T cells, with weaker expression on CD8+ T cells, concordant with the expansion of FIV into CD8+ T cells with progression of the infection. The interaction between FIV and CD134 was probed using MAb 7D6 and soluble CD134 ligand (CD134L), revealing strain-specific differences in sensitivity to both 7D6 and CD134L. Infection with isolates such as PPR and B2542 was inhibited well by both 7D6 and CD134L, suggesting a lower affinity of interaction. In contrast, GL8, CPG, and NCSU were relatively refractory to inhibition by both 7D6 and CD134L and, accordingly, may have a higher-affinity interaction with CD134, permitting infection of cells where CD134 levels are limiting.
Resumo:
The TNF family member receptor activator for NF-κB ligand (RANKL) and its receptors RANK and osteoprotegerin are key regulators of bone remodeling but also influence cellular functions of tumor and immune effector cells. In this work, we studied the involvement of RANK-RANKL interaction in NK cell-mediated immunosurveillance of acute myeloid leukemia (AML). Substantial levels of RANKL were found to be expressed on leukemia cells in 53 of 78 (68%) investigated patients. Signaling via RANKL into the leukemia cells stimulated their metabolic activity and induced the release of cytokines involved in AML pathophysiology. In addition, the immunomodulatory factors released by AML cells upon RANKL signaling impaired the anti-leukemia reactivity of NK cells and induced RANK expression, and NK cells of AML patients displayed significantly upregulated RANK expression compared with healthy controls. Treatment of AML cells with the clinically available RANKL Ab Denosumab resulted in enhanced NK cell anti-leukemia reactivity. This was due to both blockade of the release of NK-inhibitory factors by AML cells and prevention of RANK signaling into NK cells. The latter was found to directly impair NK anti-leukemia reactivity with a more pronounced effect on IFN-γ production compared with cytotoxicity. Together, our data unravel a previously unknown function of the RANK-RANKL molecule system in AML pathophysiology as well as NK cell function and suggest that neutralization of RANKL with therapeutic Abs may serve to reinforce NK cell reactivity in leukemia patients.
Resumo:
BACKGROUND: The CD28 homologue programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2 (which are homologous to B7), constitute an inhibitory pathway of T cell costimulation. The PD-1 pathway is of interest for immune-mediated diseases given that PD-1-deficient mice develop autoimmune diseases. We have evaluated the effect of local overexpression of a PD-L1.Ig fusion protein on cardiac allograft survival. METHODS: Adenovirus-mediated PD-L1.Ig gene transfer was performed in F344 rat donor hearts placed in the abdominal position in Lewis recipients. Inflammatory cell infiltrates in the grafts were assessed by immunohistochemistry. RESULTS: Allografts transduced with the PD-L1.Ig gene survived for longer periods of time compared with those receiving noncoding adenovirus or virus dilution buffer alone: median survival time (MST), 17 (range: 16-20) days vs. 11 (8-14) and 9 (8-13) days, respectively (P < 0.001). PD-L1.Ig gene transfer combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone: MST, 25 (15-42) vs. 15 (13-19) days (P < 0.05). PD-L1.Ig gene transfer was associated with decreased numbers of CD4 cells and monocytes/macrophages infiltrating the graft (P < 0.05). CONCLUSIONS: Localized PD-L1.Ig expression in donor hearts attenuates acute allograft rejection in a rat model. The effect is additive to that of a subtherapeutic regimen of CsA. These results suggest that targeting of PD-1 by gene therapy may inhibit acute cardiac allograft rejection in vivo.
Resumo:
Background: A rapid phage display method for the elucidation of cognate peptide specific ligand for receptors is described. The approach may be readily integrated into the interface of genomic and proteomic studies to identify biologically relevant ligands.Methods: A gene fragment library from influenza coat protein haemagglutinin (HA) gene was constructed by treating HA cDNA with DNAse I to create 50 ¿ 100 bp fragments. These fragments were cloned into plasmid pORFES IV and in-frame inserts were selected. These in-frame fragment inserts were subsequently cloned into a filamentous phage display vector JC-M13-88 for surface display as fusions to a synthetic copy of gene VIII. Two well characterized antibodies, mAb 12CA5 and pAb 07431, directed against distinct known regions of HA were used to pan the library. Results: Two linear epitopes, HA peptide 112 ¿ 126 and 162¿173, recognized by mAb 12CA5 and pAb 07431, respectively, were identified as the cognate epitopes.Conclusion: This approach is a useful alternative to conventional methods such as screening of overlapping synthetic peptide libraries or gene fragment expression libraries when searching for precise peptide protein interactions, and may be applied to functional proteomics.
Resumo:
The cell surface receptor Fas (FasR, Apo-1, CD95) and its ligand (FasL) are mediators of apoptosis that have been shown to be implicated in the peripheral deletion of autoimmune cells, activation-induced T cell death, and one of the two major cytolytic pathways mediated by CD8+ cytolytic T cells. To gain further understanding of the Fas system., we have analyzed Fas and FasL expression during mouse development and in adult tissues. In developing mouse embryos, from 16.5 d onwards, Fas mRNA is detectable in distinct cell types of the developing sinus, thymus, lung, and liver, whereas FasL expression is restricted to submaxillary gland epithelial cells and the developing nervous system. Significant Fas and FasL expression were observed in several nonlymphoid cell types during embryogenesis, and generally Fas and FasL expression were not localized to characteristic sites of programmed cell death. In the adult mouse, RNase protection analysis revealed very wide expression of both Fas and FasL. Several tissues, including the thymus, lung, spleen, small intestine, large intestine, seminal vesicle, prostate, and uterus, clearly coexpress the two genes. Most tissues constitutively coexpressing Fas and FasL in the adult mouse are characterized by apoptotic cell turnover, and many of those expressing FasL are known to be immune privileged. It may be, therefore, that the Fas system is implicated in both the regulation of physiological cell turnover and the protection of particular tissues against potential lymphocyte-mediated damage.
Resumo:
A series of compounds of general formula [Ru(eta(6)-p-cymene) (R(2)acac)(PTA)][X] (R(2)acac = Me(2)acac, tBu(2)acac, Ph(2)acac, Me(2)acac-Cl; PTA = 1,3,5-triaza-7-phosphaadamantane; X = BPh4, BF4), and the precursor to the Me2acac-Cl derivative [Ru(eta(6)-p-cymene)(Me(2)acac-Cl)Cl], have been prepared and characterised spectroscopically. Five of the compounds have also been characterised in the solid state by X-ray crystallography. The tetrafluoroborate salts are water-soluble, quite resistant to hydrolysis, and have been evaluated for cytotoxicity against A549 lung carcinoma and A2780 human ovarian cancer cells. The compounds are cytotoxic towards the latter cell line, and relative activities are discussed in terms of hydrolysis (less important) and lipophilicity, which appears to exert the dominating influence.
Resumo:
The effects resulting from the introduction of an oxime group in place of the distal aromatic ring of the diphenyl moiety of LT175, previously reported as a PPARα/γ dual agonist, have been investigated. This modification allowed the identification of new bioisosteric ligands with fairly good activity on PPARα and fine-tuned moderate activity on PPARγ. For the most interesting compound (S)-3, docking studies in PPARα and PPARγ provided a molecular explanation for its different behavior as full and partial agonist of the two receptor isotypes, respectively. A further investigation of this compound was carried out performing gene expression studies on HepaRG cells. The results obtained allowed to hypothesize a possible mechanism through which this ligand could be useful in the treatment of metabolic disorders. The higher induction of the expression of some genes, compared to selective agonists, seems to confirm the importance of a dual PPARα/γ activity which probably involves a synergistic effect on both receptor subtypes.
Resumo:
The epidermal growth factor (EGF) receptor/ligand system stimulates multiple pathways of signal transduction, and is activated by various extracellular stimuli and inter-receptor crosstalk signaling. Aberrant activation of EGF receptor (EGFR) signaling is found in many tumor cells, and humanized neutralizing antibodies and synthetic small compounds against EGFR are in clinical use today. However, these drugs are known to cause a variety of skin toxicities such as inflammatory rash, skin dryness, and hair abnormalities. These side effects demonstrate the multiple EGFR-dependent homeostatic functions in human skin. The epidermis and hair follicles are self-renewing tissues, and keratinocyte stem cells are crucial for maintaining these homeostasis. A variety of molecules associated with the EGF receptor/ligand system are involved in epidermal homeostasis and hair follicle development, and the modulation of EGFR signaling impacts the behavior of keratinocyte stem cells. Understanding the roles of the EGF receptor/ligand system in skin homeostasis is an emerging issue in dermatology to improve the current therapy for skin disorders, and the EGFR inhibitor-associated skin toxicities. Besides, controlling of keratinocyte stem cells by modulating the EGF receptor/ligand system assures advances in regenerative medicine of the skin. We present an overview of the recent progress in the field of the EGF receptor/ligand system on skin homeostasis and regulation of keratinocyte stem cells.