902 resultados para Hemerythrin Model Complex
Resumo:
There seems to be controversy on the anorectal sphincter presentation and anatomical division, as well as on its functional representation. Evaluation of the anorectal sphincter musculature has been achieved through several methods, including anorectal manometry and computerized tomography, but to date there is no experimental model allowing a detailed manometric study of this muscle complex. In this work, we have developed such a model, which should enable the manometric and radiographic study of the anatomical features and functional mechanisms of sphincteric injuries, as well as the assessment of drug effects on the anorectal musculature upon incontinence and constipation. Twenty-two piglets (aged 25-30 days, weighing 5-7 kg) were studied by anorectal manometry (rectoanal inhibitory reflex and vector volume) and computerized tomography (anorectal angle and anal canal length). The data obtained for the rectoanal inhibitory reflex, represented here as the average and standard deviation, were the following: relaxation duration = 14.75 +/- 3.62 s, sphincter basal pressure = 41.58 +/- 8.20 mmHg, relaxation index = 87.26 +/- 11.52%, speed of relaxation = 5.90 +/- 2.10 mm/s, and speed of relaxation recovery = 4.03 +/- 1.78 mm/s. As for the vector volume, results were as follows: vector volume = 2692.32 +/- 1298.12 mmHg(2) cm, sphincter length = 11.82 +/- 2.74 mm, high pressure zone length = 5.09 +/- 1.34 mm, maximum pressure = 61.50 +/- 20.58 mmHg, and asymmetry index = 43.50 +/- 10.03%. Radiographic evaluation led to the following results: anal canal length = 9.61 +/- 2.14 mm and anorectal angle = 137.91 +/- 7.75 degrees. The experimental model designed here allows both anorectal manometry and computerized tomography to be carried out in the same way it is performed in human beings, as long as animal sedation is strictly controlled.
Resumo:
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this article, we propose a mathematical model that describes the competition between two plant virus strains (MAV and PAV) for both the host plant (oat) and their aphid vectors. We found that although PAV is transmitted by two aphids and MAV by only one, this fact, by itself, does not explain the complete replacement of MAV by PAV in New York State during the period from 1961 through 1976; an interpretation that is in agreement with the theories of A. G. Power. Also, although MAV wins the competition within aphids, we assumed that, in 1961, PAV mutated into a new variant such that this new variant was able to overcome MAV within the plants during a latent period. As shown below, this is sufficient to explain the swap of strains; that is, the dominant MAV was replaced by PAV, also in agreement with Power`s expectations.
Resumo:
For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.
Resumo:
Polarized absorption and emission spectra of trigonal single crystals of an Er(III) complex coordinated to a heptadentate tripodal ligand are reported at temperatures between 8 and 298 K. The assigned energy levels below the onset of ligand absorption (< 25 000 cm(-1)) are fitted to a parametrized electronic Hamiltonian. The C-3 site symmetry of the Er(HI) ion requires eight parameters for a full description of the ligand field within a one-electron operator description. This compound shows unusually large splittings of the multiplets, and the fitted parameters imply that this heptadentate ligand imparts the largest ligand field reported for an Er(III) complex. The ligand field was also interpreted within the angular overlap model (AOM). We derive the AOM matrix to include both sigma and anisotropic pi bonding and show that a useful description of the C-3 ligand field can be made using only five parameters. The success of the AOM description is encouraging for applications on isomorphous complexes within the lanthanide series and in describing the ligand field of low-symmetry complexes with less parameters than in the usual spherical harmonic expansion.
Resumo:
Program compilation can be formally defined as a sequence of equivalence-preserving transformations, or refinements, from high-level language programs to assembler code, Recent models also incorporate timing properties, but the resulting formalisms are intimidatingly complex. Here we take advantage of a new, simple model of real-time refinement, based on predicate transformer semantics, to present a straightforward compilation formalism that incorporates real-time constraints. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University; on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and Larson (1998). We explore the predictive power of a differential multi-mode version of the pom-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (1999), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.
Resumo:
Age-related macular degeneration (AMD) is the major cause of blindness in the developed world. its pathomechanism is unknown and its late onset, complex genetics and strong environmental components have all hampered investigations. Here we demonstrate the development of an animal model for AMD that reproduces features associated with geographic atrophy, a transgenic mouse line (mcd/mcd) expressing a mutated form of cathepsin D that is enzymatically inactive thus impairing processing of phagocytosed photoreceptor outer segments in the retinal pigment epithelial (RPE) cells. Pigmentary changes indicating RPE cell atrophy and a decreased response to flash electroretinograms were observed in 11- to 12-month-old mcd/mcd mice. Histological studies showed RPE cell proliferation, photoreceptor degeneration, shortening of photoreceptor outer segments, and accumulation of immunoreactive photoreceptor breakdown products in the RPE cells. An accelerated photoreceptor cell death was detected in 12-month-old mcd/mcd mice. Transmission electron microscopy demonstrated presence of basal laminar and linear deposits that are considered to be the hallmarks of AMD. Small hard drusen associated with human age-related maculopathy were absent in the mcd/mcd mouse model at the ages analyzed. in summary, this model presents several features of AMD, thus providing a valuable tool for investigating the underlying biological processes and pathomechanism of AMD.
Resumo:
A substantial number of GH regulated genes have been reported in mature hepatocytes. but genes involved in GH-initiated cell differentiation have not yet been identified. Here we have studied a, ell-characterised model of GH-dependent differentiation, adipogenesis of 3T3-F442A preadipocytes, to identify genes rapidly induced by GH. Using the suppression subtractive hybridisation technique, we have identified eight genes induced within 60 min of GH treatment, and verified these by northern analysis. Six were identifiable as Stat 2. Stat 3, thrombospondin-1. oncostatin M receptor beta chain. a DEAD box RNA helicase. and muscleblind. a developmental transcription factor. Bioinformatic approaches assigned one of the two remaining unknown genes as a novel 436 residue serine,threonine kinase. As each of the identified genes hake important developmental roles. they may be important in initiating GH-induced adipogenesis. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Isothermal calorimetry has been used to examine the effect of thermodynamic non-ideality on the kinetics of catalysis by rabbit muscle pyruvate kinase as the result of molecular crowding by inert cosolutes. The investigation, designed to detect substrate-mediated isomerization of pyruvate kinase, has revealed a 15% enhancement of maximal velocity by supplementation of reaction mixtures with 0.1 M proline, glycine or sorbitol. This effect of thermodynamic non-ideality implicates the existence of a substrate-induced conformational change that is governed by a minor volume decrease and a very small isomerization constant; and hence, substantiates earlier inferences that the rate-determining step in pyruvate kinase kinetics is isomerization of the ternary enzyme product complex rather than the release of products. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.
Resumo:
This paper reviews the understanding I have gained from several years of research, and from several more years of ongoing discussions with industry leaders regarding the nature of competitiveness among tourism destinations. This understanding has been captured, in summary form, in the model of Destination Competitiveness/Sustainability (Ritchie and Crouch, 2003). This model contains seven (7) components which we have found to play a major role, from a policy perspective, in determining the competitiveness/sustainability of a tourism destination. In addition to the valuable understanding which these seven components provide from a policy perspective, the specific elements of each the major components provide a more useful/practical guidance to those who are responsible for the ongoing management of a DMO (Destination Management Organization). With this overview in mind, this paper will provide a detailed review and explanation of the model that I have developed with colleague, Dr. Geoffrey I. Crouch of Latrobe University in Melbourne, Australia. Based on previous presentations throughout the world, it has proven very helpful to both academics and practitioners who seek to understand the complex nature of tourism destination competitiveness/sustainability.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
Model updating methods often neglect that in fact all physical structures are damped. Such simplification relies on the structural modelling approach, although it compromises the accuracy of the predictions of the structural dynamic behaviour. In the present work, the authors address the problem of finite element (FE) model updating based on measured frequency response functions (FRFs), considering damping. The proposed procedure is based upon the complex experimental data, which contains information related to the damped FE model parameters and presents the advantage of requiring no prior knowledge about the damping matrix structure or its content, only demanding the definition of the damping type. Numerical simulations are performed in order to establish the applicability of the proposed damped FE model updating technique and its results are discussed in terms of the correlation between the simulated experimental complex FRFs and the ones obtained from the updated FE model.
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.