148 resultados para Hausdorff frattali Mandelbrot


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider a class of parametric implicit vector equilibrium problems in Hausdorff topological vector spaces where a mapping f and a set K are perturbed by parameters is an element of and lambda respectively. We establish sufficient conditions for the upper semicontinuity and lower semicontinuity of the solution set mapping S : Lambda(1) x A(2) -> 2(X) for such parametric implicit vector equilibrium problems. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our primary goal in this preamble is to highlight the best of Vasil Popov’s mathematical achievements and ideas. V. Popov showed his extraordinary talent for mathematics in his early papers in the (typically Bulgarian) area of approximation in the Hausdorff metric. His results in this area are very well presented in the monograph of his advisor Bl. Sendov, “Hausdorff Approximation”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dedicated to the memory of our colleague Vasil Popov January 14, 1942 – May 31, 1990 * Partially supported by ISF-Center of Excellence, and by The Hermann Minkowski Center for Geometry at Tel Aviv University, Israel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study a nonlinear evolution inclusion of subdifferential type in Hilbert spaces. The perturbation term is Hausdorff continuous in the state variable and has closed but not necessarily convex values. Our result is a stochastic generalization of an existence theorem proved by Kravvaritis and Papageorgiou in [6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 65D18.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 58C06, 47H10, 34A60.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis trata sobre aproximaciones de espacios métricos compactos. La aproximación y reconstrucción de espacios topológicos mediante otros más sencillos es un tema antigüo en topología geométrica. La idea es construir un espacio muy sencillo lo más parecido posible al espacio original. Como es muy difícil (o incluso no tiene sentido) intentar obtener una copia homeomorfa, el objetivo será encontrar un espacio que preserve algunas propriedades topológicas (algebraicas o no) como compacidad, conexión, axiomas de separación, tipo de homotopía, grupos de homotopía y homología, etc. Los primeros candidatos como espacios sencillos con propiedades del espacio original son los poliedros. Ver el artículo [45] para los resultados principales. En el germen de esta idea, destacamos los estudios de Alexandroff en los años 20, relacionando la dimensión del compacto métrico con la dimensión de ciertos poliedros a través de aplicaciones con imágenes o preimágenes controladas (en términos de distancias). En un contexto más moderno, la idea de aproximación puede ser realizada construyendo un complejo simplicial basado en el espacio original, como el complejo de Vietoris-Rips o el complejo de Cech y comparar su realización con él. En este sentido, tenemos el clásico lema del nervio [12, 21] el cual establece que para un recubrimiento por abiertos “suficientemente bueno" del espacio (es decir, un recubrimiento con miembros e intersecciones contractibles o vacías), el nervio del recubrimiento tiene el tipo de homotopía del espacio original. El problema es encontrar estos recubrimientos (si es que existen). Para variedades Riemannianas, existen algunos resultados en este sentido, utilizando los complejos de Vietoris-Rips. Hausmann demostró [35] que la realización del complejo de Vietoris-Rips de la variedad, para valores suficientemente bajos del parámetro, tiene el tipo de homotopía de dicha variedad. En [40], Latschev demostró una conjetura establecida por Hausmann: El tipo de homotopía de la variedad se puede recuperar utilizando un conjunto finito de puntos (suficientemente denso) para el complejo de Vietoris-Rips. Los resultados de Petersen [58], comparando la distancia Gromov-Hausdorff de los compactos métricos con su tipo de homotopía, son también interesantes. Aquí, los poliedros salen a relucir en las demostraciones, no en los resultados...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis doctoral nace con el propósito de entender, analizar y sobre todo modelizar el comportamiento estadístico de las series financieras. En este sentido, se puede afirmar que los modelos que mejor recogen las especiales características de estas series son los modelos de heterocedasticidad condicionada en tiempo discreto,si los intervalos de tiempo en los que se recogen los datos lo permiten, y en tiempo continuo si tenemos datos diarios o datos intradía. Con esta finalidad, en esta tesis se proponen distintos estimadores bayesianos para la estimación de los parámetros de los modelos GARCH en tiempo discreto (Bollerslev (1986)) y COGARCH en tiempo continuo (Kluppelberg et al. (2004)). En el capítulo 1 se introducen las características de las series financieras y se presentan los modelos ARCH, GARCH y COGARCH, así como sus principales propiedades. Mandelbrot (1963) destacó que las series financieras no presentan estacionariedad y que sus incrementos no presentan autocorrelación, aunque sus cuadrados sí están correlacionados. Señaló también que la volatilidad que presentan no es constante y que aparecen clusters de volatilidad. Observó la falta de normalidad de las series financieras, debida principalmente a su comportamiento leptocúrtico, y también destacó los efectos estacionales que presentan las series, analizando como se ven afectadas por la época del año o el día de la semana. Posteriormente Black (1976) completó la lista de características especiales incluyendo los denominados leverage effects relacionados con como las fluctuaciones positivas y negativas de los precios de los activos afectan a la volatilidad de las series de forma distinta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi tratta della formulazione dell'assioma della scelta fatta da Zermelo e di alcune sue forme equivalenti. Inoltre si parlerà della sua storia, delle critiche che gli sono state mosse e degli importanti teoremi che seguono direttamente dall'assioma. Viene anche trattato il paradosso di Hausdorff che introduce il problema della misura e il paradosso di Banach-Tarscki.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the notion of degree forsubmanifolds embedded in an equiregular sub-Riemannian manifold and we provide the definition of their associated area functional. In this setting we prove that the Hausdorff dimension of a submanifold coincides with its degree, as stated by Gromov. Using these general definitions we compute the first variation for surfaces embedded in low dimensional manifolds and we obtain the partial differential equation associated to minimal surfaces. These minimal surfaces have several applications in the neurogeometry of the visual cortex.